BUILDING CONSTRUCTION
HANDBOOK

The Building Construction Handbook is THE authoritative reference for all construction students and professionals. Its detailed drawings clearly illustrate the construction of building elements, and have been an invaluable guide for builders since 1988. The principles and processes of construction are explained with the concepts of design included where appropriate. Extensive coverage of building construction practice, techniques, and regulations representing both traditional procedures and modern developments are included to provide the most comprehensive and easy to understand guide to building construction.

This new edition has been updated to reflect recent changes to the building regulations, as well as new material on the latest technologies used in domestic construction.

Building Construction Handbook is the essential, easy-to-use resource for undergraduate and vocational students on a wide range of courses including NVQ and BTEC National, through to Higher National Certificate and Diploma, to Foundation and three-year Degree level. It is also a useful practical reference for building designers, contractors and others engaged in the construction industry.

Roger Greeno is a well-known author of construction texts. He has extensive practical and consultancy experience in the industry, in addition to lecturing at several colleges of further and higher education, and the University of Portsmouth. He has also examined for City & Guilds, Edexcel, the Chartered Institute of Building and the University of Reading.

Roy Chudley, formerly Senior Lecturer in Building Technology at the Guildford College of Technology, U.K, is an established author of numerous respected construction texts.
This page intentionally left blank
CONTENTS

Preface to Tenth edition xi

Part One General
Built environment 2
The structure 5
Primary and secondary elements 12
Component parts and functions 15
Construction activities 19
Construction documents 20
Construction drawings 21
Building survey 28
Energy Performance Certificate 32
Method statement and programming 36
Weights and densities of building materials 38
Imposed floor loads 40
Drawings – notations 41
Planning application 45
Modular coordination 52
Construction regulations 54
CDM regulations 55
Safety signs and symbols 56
Building Regulations 58
Accredited construction details 71
Code for Sustainable Homes 72
British Standards 73
European Standards 74
Product and practice accreditation 76
CI/SfB system of coding 78
CPI System of Coding 79
Uniclass system of coding 80

Part Two Site Works
Site survey 86
Site measurement 87
Site investigations 90
Soil investigation 93
Soil assessment and testing 100
Site layout considerations 112
Contents

Site security 115
Site lighting and electrical supply 118
Site office accommodation 122
Site health and welfare provision 123
Materials storage 127
Materials testing 132
Timber decay and treatment 147
Protection orders for trees and structures 151
Locating public utility services 153
Setting out 154
Levels and angles 159
Road construction 162
Tubular scaffolding and scaffolding systems 172
Shoring systems 186
Demolition 195

Part Three Builders Plant

- General considerations 202
- Bulldozers 205
- Scrapers 206
- Graders 207
- Tractor shovels 208
- Excavators 209
- Transport vehicles 214
- Hoists 217
- Rubble chutes and skips 220
- Cranes 221
- Concreting plant 233

Part Four Substructure

- Foundations – function, materials and sizing 244
- Foundation beds 253
- Short bored pile foundations 259
- Foundation types and selection 261
- Piled foundations 266
- Retaining walls 287
- Gabions and mattresses 301
- Basement excavations and construction 304
- Waterproofing basements 313
- Excavations 319
- Concrete production 325
- Cofferdams 333
- Steel sheet piling 334
- Caissons 337
Underpinning 341
Ground water control 350
Soil stabilisation and improvement 360
Reclamation of waste land 365
Treatment of contaminated subsoil 366

Part Five Superstructure – 1
Choice of materials 370
Brick and block walls 379
Cavity walls 400
Damp-proof courses and membranes 408
Gas-resistant membranes 415
Calculated brickwork 417
Mortars 422
Arches and openings 425
Windows 432
Glass and glazing 448
Doors 462
Crosswall construction 471
Framed construction 475
Rendering to external walls 479
Cladding to external walls 482
Roofs – basic forms 490
Pitched roofs 494
Double lap tiling 505
Single lap tiling 514
Slating 516
Timber flat roofs 522
Dormer windows 537
Green roofs 546
Thermal insulation 548
U-values 549
Thermal bridging 580
Access for the disabled 586

Part Six Superstructure – 2
Reinforced concrete slabs 592
Reinforced concrete framed structures 596
Reinforcement types 606
Structural concrete, fire protection 609
Formwork 610
Precast concrete frames 617
Prestressed concrete 621
Contents

Structural steelwork sections 628
Structural steelwork connections 633
Structural fire protection 638
Portal frames 646
Composite timber beams 655
Multi-storey structures 658
Roof sheet coverings 665
Long span roofs 670
Shell roof construction 684
Membrane roofs 693
Rooflights 695
Panel walls 699
Rainscreen cladding 705
Structural glazing 708
Curtain walling 710
Concrete claddings 714
Concrete surface finishes 721
Concrete surface defects 725

Part Seven Internal Construction and Finishes

Internal elements 728
Internal walls 729
Construction joints 734
Internal walls, fire protection 736
Party/separating walls 737
Partitions 739
Strut design 741
Plasters and plastering 746
Dry lining techniques 750
Plasterboard 753
Wall tiling 756
Domestic floors and finishes 758
Large cast in-situ ground floors 766
Concrete floor screeds 768
Timber suspended upper floors 771
Lateral restraint 774
Timber beam design 777
Holing and notching joists 780
Timber floors, fire protection 782
Reinforced concrete suspended floors 784
Precast concrete floors 789
Raised access floors 794
Sound insulation 795
Timber, concrete and metal stairs 808
Contents

Internal doors 834
Doorsets 837
Fire-resisting doors 838
Plasterboard ceilings 844
Suspended ceilings 845
Paints and painting 850
Joinery production 854
Composite boarding 860
Plastics in building 862

Part Eight Domestic Services

Drainage effluents 868
Subsoil drainage 869
Surface water removal 871
Road drainage 876
Rainwater installations 878
Drainage systems 882
Drainage – pipe sizes and gradients 891
Water supply 892
Cold water installations 894
Hot water installations 896
Flow controls 901
Cisterns and cylinders 902
Pipework joints 904
Sanitary fittings 905
Single and ventilated stack systems 908
Hot water heating systems 913
Electrical supply and installation 917
Gas supply and gas fires 926
Open fireplaces and flues 930
Services – fire stops and seals 939
Telephone installations 940
Electronic communications installations 941

Index 943
This page intentionally left blank
PREFACE TO TENTH EDITION

The Building Construction Handbook originated in 1982 as a series of four “check-books” written and illustrated by Roy Chudley. In 1988 these successful study guides were consolidated into one volume under the present title. The format of comprehensive illustrations and support text has been maintained as revisions and updates are incorporated into new editions. This latest edition contains a fresh assessment of the practices, procedures, guidance and legislation appropriate to construction and maintenance of housing and other low-rise buildings. It also includes applications to medium and larger scale structures for commercial and industrial purposes.

Much of the work from earlier editions is retained as an important reference, acknowledging that the industry end product generally has a long life span representative of high capital investment. Product aftercare in the form of maintenance, repair, renovation, refurbishment, extensions and alterations can represent some 50% of the industry turnover, much more when bank lending is limited for new development. For this purpose, many established and traditional practices shown in earlier editions are retained. Existing practices also benchmark development as a basis from which contemporary design and technology evolve. This is in response to political, social and economic requirements through legislative directives for environmental issues, energy regulation, fuel conservation and the need for sustainability in construction.

The content of the book is extensive, although no textbook, not least this one, could ever incorporate all practices experienced in an industry so diverse as construction. The content is not exemplar and neither does it attempt to be prescriptive. It is a perspective of construction principles including guidance to processes and, where appropriate, associated design. Building is to some extent determined by availability of materials and skilled operatives; therefore local, regional and national factors will also be responsible for some variation.

Supplementary study material and detail can be obtained from professional journals, legislative papers, manufacturers’ product literature, the many cross-references in the text and attending exhibits and seminars. The most valuable learning resource is observing and monitoring construction in progress.

RG 2014
This page intentionally left blank
1 GENERAL

BUILT ENVIRONMENT
THE STRUCTURE
PRIMARY AND SECONDARY ELEMENTS
COMPONENT PARTS AND FUNCTIONS
CONSTRUCTION ACTIVITIES
CONSTRUCTION DOCUMENTS
CONSTRUCTION DRAWINGS
BUILDING SURVEY
ENERGY PERFORMANCE CERTIFICATES
METHOD STATEMENT AND PROGRAMMING
WEIGHTS AND DENSITIES OF BUILDING MATERIALS
IMPOSED FLOOR LOADS
DRAWINGS – NOTATIONS
PLANNING APPLICATION
MODULAR COORDINATION
CONSTRUCTION REGULATIONS
CDM REGULATIONS
SAFETY SIGNS AND SYMBOLS
BUILDING REGULATIONS
ACCREDITED CONSTRUCTION DETAILS
CODE FOR SUSTAINABLE HOMES
BRITISH STANDARDS
EUROPEAN STANDARDS
PRODUCT AND PRACTICE ACCREDITATION
CI/SFB SYSTEM OF CODING
CPI SYSTEM OF CODING
UNICLASS SYSTEM OF CODING

1
Environment = surroundings which can be natural, man-made or a combination of these.

Built Environment = created by man with or without the aid of the natural environment.

ELEMENTS of the NATURAL ENVIRONMENT
- grasses and wild flowers
- deciduous and coniferous trees
- shrubs and bushes
- waterways and lakes
- rock outcrops

ELEMENTS of the BUILT ENVIRONMENT (EXTERNAL)
- buildings
- retaining walls
- paved areas
- rockeries
- planted areas
- pools and ponds
- trees and shrubs

ELEMENTS of the BUILT ENVIRONMENT (INTERNAL)
- artificial light
- texture and colour of internal finishes
- daylight, ventilation and vision out
- indoor plant cultivation
- internal space heating
- circulation space
- furniture
Environmental Considerations:
1. Planning requirements.
2. Building Regulations.
3. Land restrictions by vendor or lessor.
4. Availability of services.
5. Local amenities including transport.
6. Subsoil conditions.
7. Levels and topography of land.
8. Adjoining buildings or land.
9. Use of building.
10. Daylight and view aspects.

Examples ~

Houses

STUDIOS LABORATORIES
ART ROOMS

HANDICRAFT ROOMS
WORKSHOPS
LIBRARY

CLASSROOMS
STAFF ROOMS OFFICES

Factories

WORKSHOPS
MACHINE SHOPS
STORAGE AREAS

LIGHT ASSEMBLY WORK AND SIMILAR ACTIVITIES
OFFICES

SCHOOLS

OPERATING THEATRES

WARDS WARDS

SOLARIUMS AND OFFICES

Hospitals

Examples of built environment
Physical Considerations:
1. Natural contours of land.
2. Natural vegetation and trees.
3. Size of land and/or proposed building.
4. Shape of land and/or proposed building.
5. Approach and access roads and footpaths.
6. Services available.
7. Natural waterways, lakes and ponds.
8. Restrictions such as rights of way; tree preservation and ancient buildings.
9. Climatic conditions created by surrounding properties, land or activities.

Examples ~

Split level construction to form economic shape.

Shape determined by existing trees.

Plateau or high ground solution giving dry site conditions on sloping sites.

Stepped elevation or similar treatment to blend with the natural environment.
The Structure — Basic Types

SIMPLY SUPPORTED BEAM
for design purposes ends are assumed to be free i.e. not fixed
beam
supporting wall
clear span

BUILT-IN BEAM
for design purposes ends assumed to have some degree of fixity
beam
supporting wall
effective span

CANTILEVER BEAM
supported or fixed at one end only
beam
supporting wall or column

PROPPED CANTILEVER
supported or fixed at one end only
beam
propped at free end

STRUT
structural member which is subjected mainly to compression forces

VERTICAL STRUT
usually called a column stanchion or pier
TIE

A structural member which is subjected mainly to tension forces.

ARCHES

Loads are transmitted around arch to the abutments.

POST AND LINTEL

PLANE FRAME

- Rafter
- Tie
- Strut
SOLID CONSTRUCTION
structurally limited confined usually to buildings of low height and short spans

main beams
secondary beams
edge beams
columns

FRAMED OR SKELETAL CONSTRUCTION

load-bearing walls
The Structure — Basic Forms

Panel or Box Construction

- Structure consists of a series of interconnected plates forming structural walls and floors.

Folded Plate Construction

- Flat slab folded so that roof will behave as a beam spanning along fold.
- Columns under diaphragms.
Shell Roofs — these are formed by a structural curved skin covering a given plan shape and area.

Examples:
- double curvature shell formed by rotating a plain curved shape about a vertical axis
- hemispherical rotational dome
- vertical cut plane
- pendentive
- inscribed polygon

DOME OR ROTATIONAL SHELL
- formed by a curved line moving over another curved line

PENDENTIVE DOME
- cut cylinder giving a single curvature shell
- diaphragm

TRANSLATIONAL DOME

BARREL VAULT
- double curvature saddle-shaped shell
- hyperbolic paraboloid

CONOID SHELLS
- diaphragm
The Structure — Basic Forms

A series of interconnected inverted pyramids

A series of interconnected grids

Space Deck

Space Frame

Compression arch system

Tension cables to support coverings

Tension Cable Structure

Net of cables forming tension membrane

Coverings supported by membrane

Tension Membrane Structure
Substructure — can be defined as all structure below the superstructure which in general terms is considered to include all structure below ground level but including the ground floor bed.

Typical Examples:

- Strip foundation
- RC pad foundation
- Pile foundation
- Basement wall
- Basement raft foundation
- Service duct
- Retaining wall
- Basement area paving
Superstructure ~ can be defined as all structure above substructure both internally and externally.

Primary Elements ~ basically components of the building carcass above the substructure excluding secondary elements, finishes, services and fittings.

Typical Examples~

- roof
- external walls
- galleries
- partitions
- upper floors
- framing members
- beam
- column
- stairs and ramps
- internal walls

substructure ~ see page 11
Secondary Elements ~ completion of the structure including completion around and within openings in primary elements.

Typical Examples:

- **EXTERNAL WALLS**
 - borrowed lights and hatches
 - windows
 - doors and door frames
 - doors and door linings

- **INTERNAL WALLS**
 - floating floors
 - cavity floors
 - floor traps
 - floors
 - suspended ceilings

- **BALUSTRADES**
 - stairs ~ primary element

- **ROOFLIGHTS**
 - roof ~ primary element
Finish ~ the final surface which can be self-finished as with a trowelled concrete surface or an applied finish such as floor tiles.

Typical Examples ~

- **EXTERNAL WALLS**
 - tile hanging
 - weather boarding
 - rendering
 - dry lining
 - trims

- **INTERNAL WALLS**
 - paint or wallpaper
 - plaster
 - wall ~ primary element
 - trims

- **FLOORS**
 - screed
 - floor ~ primary element
 - quarry tiles
 - wood blocks
 - tiles or carpet

- **STAIRS**
 - tread and riser finish such as tiles or carpet
 - nosing trims
 - stairs ~ primary element

- **CEILINGS**
 - plasterboard and plaster

- **ROOFS**
 - built-up roofing felts asphalt and metal coverings
 - tiles or slates
 - roof ~ primary element
Domestic Structures

load of roof coverings plus any snow and wind loads transferred to roof members

loads accepted by roof members transferred to walls

loads over openings transferred via a lintel to the jambs on either side

total floor loads transferred to wall

ceiling loads plus any loads in roof transferred to ceiling joists

dead and live loads of flooring transferred to floor joists

wall loads transferred to foundations

total floor loads transferred to internal load bearing wall

wall loads transferred to foundations

ground floor loads transferred direct to ground

total wall loads transferred via foundations to a suitable load bearing capacity subsoil
Structure — Component Parts and Functions

Framed Structures ~

- Roof loads accepted by beams transferred to columns
- Load of roof coverings plus any snow and wind loads transferred to roof slab
- Load of infill panel transferred to edge beam at base
- Loads accepted by roof slab transferred to beams
- Total roof loads transmitted down columns
- Edge beam acts as a main beam
- Live and loads of floor transferred to main and secondary beams
- Main and edge beam loads transferred to columns
- Secondary beam loads transferred to main beams
- Total column loads transferred to foundation
- Total on foundation transferred to subsoil
External Envelope ~ consists of the materials and components which form the external shell or enclosure of a building, i.e. walls, ground floor, roof, windows, doors and roof-lights. These may be load bearing or non-load bearing according to the structural form of the building.

Primary Functions ~

- Weather exclusion
- Thermal insulation
- Heat loss
- Sound insulation
- Envelope to have adequate strength, stability, durability and fire resistance
- Provide ventilation
- Security and safety
- Provide visual contact with outside
- Provide access and egress
- Resist moisture penetration rising through the wall and floor from the ground
Dwelling Houses ~

- roof void
- ridge or apex of roof
- wall continuous to roof ridge
- separated buildings
- upper floor
- ground floor
- walls between terraced and semi-detached houses defined as compartment (fire) and separating (sound)

Flats ~

- stairwell/protected shaft
- separated living units
- compartment walls (fire), separating walls (sound)
- compartment floor (fire), separating floor (sound)

Note: Floors within a maisonette are not required to be "compartment".

For non-residential buildings, compartment size is limited by floor area depending on the building function (purpose group) and height.

Compartment - a building or part of a building with walls and floors constructed to contain fire and to prevent it from spreading to another part of the same building or to an adjoining building.

Separating floor/wall - element of sound resisting construction between individual living units.
A Building or Construction Site can be considered as a temporary factory employing the necessary resources to successfully fulfil a contract.

Manpower:
in the form of managerial and supervisory staff.

Manpower:
in the form of craftsmen and general site operatives.

Materials:
for temporary works, access provisions, security and final structure.

Plant:
from the simple hand-held tools to large items such as tower cranes.

Money:
in the form of capital investment from the building owner to pay for the land, design team fees and a building contractor who uses his money to buy materials, buy or hire plant and hire labour to enable the project to be realised.
ARCHITECTS’ DRAWINGS
1. Small scale plans and elevations showing general arrangement and layout.
2. Drawings to larger scales giving specific details and data.

ENGINEERS’ DRAWINGS
1. Small drawings giving general arrangements.
2. Drawings to larger scales giving specific details and data.

SCHEDULES
1. Collation of similar standard items referenced to drawings.
2. Colour and decor schemes.

SPECIFICATION
Written document setting out in detail the specific requirements for materials and workmanship.

BILL OF QUANTITIES or CONTRACT BILLS
Written document prepared in accordance with the Standard Method of Measurement. Enables estimator to prepare tender sum.

CONTRACT DOCUMENT
Usually a pro forma document but could be specially prepared. Sets out the precise conditions and terms of contract.
Location Drawings ~
Site Plans - used to locate site, buildings, define site levels, indicate services to buildings, identify parts of site such as roads, footpaths and boundaries and to give setting-out dimensions for the site and buildings as a whole. Suitable scale not less than 1:2500

Floor Plans - used to identify and set out parts of the building such as rooms, corridors, doors, windows, etc. Suitable scale not less than 1:100

Elevations - used to show external appearance of all faces and to identify doors and windows. Suitable scale not less than 1:100

Sections - used to provide vertical views through the building to show method of construction. Suitable scale not less than 1:50

Component Drawings - used to identify and supply data for components to be supplied by a manufacturer or for components not completely covered by assembly drawings. Suitable scale range 1:100 to 1:1

Assembly Drawings - used to show how items fit together or are assembled to form elements. Suitable scale range 1:20 to 1:5

All drawings should be fully annotated, fully dimensioned and cross-referenced.

Sketch — this can be defined as a draft or rough outline of an idea; it can be a means of depicting a three-dimensional form in a two-dimensional guise. Sketches can be produced free-hand or using rules and set squares to give basic guidelines.

All sketches should be clear, show all the necessary detail and above all be in the correct proportions.

Sketches can be drawn by observing a solid object or they can be produced from conventional orthographic views but in all cases can usually be successfully drawn by starting with an outline ‘box’ format giving length, width and height proportions and then building up the sketch within the outline box.

Example — Square-based Chimney Pot.

![Sketch of a square-based chimney pot with given data and free-hand sketch.](image)
Orthographic Projection - a means of drawing independent views of a solid object on a plane surface.

Example - Small Garage and Workshop

The arrangement of the plan and elevations is known as First Angle Projection and is the recommended method of presenting drawings of building works.

NB. the usual annotation and dimensions found on general drawing have been omitted for clarity.
Isometric Projections ~ a pictorial projection of a solid object on a plane surface drawn so that all vertical lines remain vertical and of true scale length, all horizontal lines are drawn at an angle of \(30^\circ \) and are of true scale length; therefore scale measurements can be taken on the vertical and \(30^\circ \) lines but cannot be taken on any other inclined line.

A similar drawing can be produced using an angle of \(45^\circ \) for all horizontal lines and is called an Axonometric Projection.
Perspective Projection - a means of representing a three-dimensional view of a solid object on a plane surface.

- Height line:
- Vanishing point left:
- Eye line:
- Ground line:
- Picture plane:

- Side of plan extended to cut picture plane to fix height line on which all scale heights are plotted.

- Lines drawn from observer parallel to plan sides to cut picture plane to locate vanishing points on eye line.

- Angle of vision between 30° & 60°.
- Observer position by choice depending on view required.

- Horizontal lines of solid object radiating from vanishing points.
- Vanishing point right:
- Height of observer's eye above ground level:

- Position of ground line to suit paper size.
- Position of picture plane by choice - the further away from observer the larger the perspective projection.

- Sight lines from observer drawn through all salient points on plan to cut picture plane to fix vertical lines of perspective projection.

- Direct line of vision.

NB. This drawing to be read in conjunction with page 24.
Communicating Information — Floor Plans and Elevations

FRONT ELEVATION

REAR ELEVATION

SIDE ELEVATION (Right)

SIDE ELEVATION (Left)

GROUND FLOOR PLAN

FIRST FLOOR PLAN

FOUR BEDROOMED HOUSE

Scale: 1

Drawing Ref.: RG/HNC,D/10
Communicating Information — Block and Site Plans
Construction Defects – correct application of materials produced to the recommendations of British, European and International Standards authorities, in accordance with local building regulations, bye-laws and the rules of building guarantee companies, i.e. National House Building Council (NHBC) and MD Insurance Services, should ensure a sound and functional structure. However, these controls can be seriously undermined if the human factor of quality workmanship is not fulfilled. The following guidance is designed to promote quality controls:

BS 8000: Workmanship on building sites.

Building Regulations. Approved Document to support Regulation 7 – materials and workmanship.

No matter how good the materials, the workmanship and supervision, the unforeseen may still affect a building. This may materialise several years after construction. Some examples of these latent defects include: woodworm emerging from untreated timber, electrolytic decomposition of dissimilar metals inadvertently in contact, and chemical decomposition of concrete. Generally, the older a building the more opportunity there is for its components and systems to have deteriorated and malfunctioned. Hence the need for regular inspection and maintenance. The profession of facilities management has evolved for this purpose and is represented by the British Institute of Facilities Management (BIFM).

Property values, repairs and replacements are of sufficient magnitude for potential purchasers to engage the professional services of a building surveyor. Surveyors are usually members of the Royal Institution of Chartered Surveyors (RICS). The extent of survey can vary, depending on a client’s requirements. This may be no more than a market valuation to secure financial backing, to a full structural survey incorporating specialist reports on electrical installations, drains, heating systems, etc.

Further reading:

Established Procedure – the interested purchaser engages a building surveyor.

UK Government Requirements – the seller to provide an energy performance certificate. This is a fuel use and efficiency appraisal on a numerical scale. See pages 32 and 33.

Survey document preliminaries:
* Title and address of property
* Client’s name, address and contacts
* Survey date and time
* Property status – freehold, leasehold or commonhold
* Occupancy – occupied or vacant. If vacant, source of keys
* Extent of survey, e.g. full structural + services reports
* Specialists in attendance, e.g. electrician, heating engineer, etc.
* Age of property (approx. if very dated or no records)
* Disposition of rooms, i.e. number of bedrooms, etc.
* Floor plans and elevations if available
* Elevation (flooding potential) and orientation (solar effect)
* Estate/garden area and disposition if appropriate
* Means of access – roads, pedestrian only, rights of way

Survey tools and equipment:
* Drawings + estate agent’s particulars if available
* Notebook and pencil/pen
* Binoculars and a camera with flash facility
* Tape measure, spirit level and plumb line
* Other useful tools, to include small hammer, torch, screwdriver and manhole lifting irons
* Moisture meter
* Ladders – eaves access and loft access
* Sealable bags for taking samples, e.g. wood rot, asbestos, etc.
Estate and garden:
- Location and establishment of boundaries
- Fences, gates and hedges - material, condition and suitability
- Trees - type and height, proximity to building
- Pathways and drives - material and condition
- Outbuildings - garages, sheds, greenhouses, barns, etc.
- Proximity of water courses

Roof:
- Tile type, treatment at ridge, hips, verge and valleys
- Age of covering, repairs, replacements, renewals, general condition, defects and growths
- Eaves finish, type and condition
- Gutters - material, size, condition, evidence of leakage
- Rainwater downpipes as above
- Chimney - dpcs, flashings, flaunching, pointing, signs of movement
- Flat roofs - materials, repairs, abutments, flashings and drainage

Walls:
- Materials - type of brick, rendering, cladding, etc., condition and evidence of repairs
- Solid or cavity construction, if cavity extent of insulation and type
- Pointing of masonry, painting of rendering and cladding
- Air brick location, function and suitability
- Dpc, material and condition, position relative to ground level
- Windows and doors, material, signs of rot or damage, original or replacement, frame seal
- Settlement - signs of cracking, distortion of window and door frames - specialist report

Drainage:
A building surveyor may provide a general report on the condition of the drainage and sanitation installation. However, a full test for leakage and determination of self-cleansing and flow conditions to include fibre-optic scope examination is undertaken as a specialist survey.
Roof space:
* Access to all parts, construction type – traditional or trussed
* Evidence of moisture due to condensation – ventilation at eaves, ridge, etc.
* Evidence of water penetration – chimney flashings, abutments and valleys
* Insulation – type and quantity
* Party wall in semi-detached and terraced dwellings – suitability as fire barrier
* Plumbing – adequacy of storage cistern, insulation, overflow function

Floors:
* Construction – timber, precast or cast in-situ concrete? Finish condition?
* Timber ground floor – evidence of dampness, rot, woodworm, ventilation, dpcs
* Timber upper floor stability, i.e. wall fixing, strutting, joist size, woodworm, span and loading

Stairs:
* Type of construction and method of fixing – built in-situ or preformed
* Soffit, re. fire protection (plasterboard?)
* Balustrading – suitability and stability
* Safety – adequate screening, balusters, handrail, pitch angle, open tread, tread wear

Finishes:
* General décor, i.e. paint and wallpaper condition – damaged, faded
* Woodwork/joinery – condition, defects, damage, paintwork
* Plaster – ceiling (plasterboard or lath and plaster?) – condition and stability
* Plaster – walls – render and plaster or plasterboard, damage and quality of finish
* Staining – plumbing leaks (ceiling), moisture penetration (wall openings), rising damp
* Fittings and ironmongery – adequacy and function, weather exclusion and security

Supplementary enquiries should determine the extent of additional building work, particularly since the planning threshold of 1948. Check for planning approvals, permitted development and Building Regulation approvals, exemptions and completion certificates.

Services – apart from a cursory inspection to ascertain location and suitability of system controls, these areas are highly specialised and should be surveyed by those appropriately qualified.
Energy Performance Certificate (EPC) applications include:

- Construction of new buildings.
- Extensions to existing buildings.
- Alterations to existing buildings to provide an increase or a reduction in the number of separate occupancies, e.g. a house conversion into flats or vice versa.
- Refurbishment or modification to include provision or extension of fixed energy consuming building services for hot water, heating, air conditioning or mechanical ventilation (applies to buildings with a floor area exceeding 1000 m² but can also be required for smaller buildings depending on specification of installation).
- Part of the marketing particulars when selling or letting a new or existing property.

The above applications relate quite simply to buildings that are roofed, have enclosing walls and use energy consuming appliances to condition the internal space. Some building types are exempted an EPC, these include the following:

- Buildings listed under the Planning (Listed Buildings and Conservation Areas) Act.*
- Buildings within a conservation area as determined under Section 69 of the Act.*
- Structures included in the monuments schedule under Section 1 of the Ancient Monuments and Archaeological Areas Act.*
- Churches and other buildings designated primarily for worship.
- Temporary buildings with less than two years’ expected use.
- Industrial buildings, workshops and non-residential agricultural buildings/barns with low demands on energy.
- Detached buildings other than dwellings with usable floor area of less than 50 m².

* The objective is to preserve the character and appearance of specific buildings that would otherwise be altered or spoilt by applying contemporary energy efficiency requirements.

Ref. The Energy Performance of Buildings (Certificates and Inspections) (England and Wales) Regulations.
An Energy Performance Certificate (EPC) provides a rating for fuel use efficiency in a building. This rating relates to the amount of carbon dioxide (CO₂) emitted by the energy producing appliances.

Asset rating ~ an estimate of the fuel energy required to meet the needs of a building during normal occupancy. A performance rating based on a building’s age, location/exposure, size, glazing system, materials, insulation, general condition, fuel use controls and fixed appliance efficiency, e.g. boiler (SEDBUK rating see page 562). Rating is alphabetical from A to G, A the highest grade for energy efficiency with lowest impact on environmental damage in terms of CO₂ emissions. An EU-type energy rating label is part of the certification documents. It is similar to the example shown on page 566 as applied to windows. The alphabetic rating relates directly to SAP numerical ratings (see page 559) as follows:

EPC asset rating (SAP rating) ~

A (92 - 100) B (81 - 91) C (69 - 80) D (55 - 68)
E (39 - 54) F (21 - 38) G (1 - 20)

Operational rating ~ an alternative to asset rating, using the numerical scale for energy consumed over a period of time. This could be presented monthly or seasonally to indicate varying demands.

CO₂ emission rate calculations for new-build and refurbishment work ~

Before work commences the local building control authority (LA) to be provided with the following for approval:

- Target CO₂ emission rate by calculation (TER).
- Dwelling CO₂ emission rate by calculation and design (DER).
- Building design specification relative to calculated CO₂ emissions.

After (within five days of completion), LA to be provided with certification confirming:

- Target CO₂ emissions.
- Calculated CO₂ emissions as constructed.
- Confirmation that the building design specification is adhered to.
- If not, details of variations to be provided.

Note: TER and DER energy performance requirements are expressed in mass of CO₂ in units of kg per m² floor area per year. See also pages 567 and 568.
EPC content:
Address and location of the building assessed.
Activity/function of the building, e.g. dwelling house.
Date of construction, approximate if very old.
Construction, e.g. solid walls, cavity walls, etc.
Materials of construction.
Heat energy source, system type and fuel used.
Electrical energy source, lighting and power provision.
Energy efficiency asset rating.
Environmental impact rating (CO₂ emissions).
Recommendations for improvements.
Date of issue (valid 10 years unless significant changes occur).
Reference/registration number.
Assessor’s name, accreditation number and scheme number.

EPC assessor/surveyor ~ an appropriately qualified energy assessment member of an accredited scheme approved by the Secretary of State for the Department for Communities and Local Government (DCLG), as defined in the Energy Performance of Buildings (Certificates and Inspections) (England and Wales) Regulations. Within five days of work completion, the assessor must provide the building owner with an EPC and the local authority to be informed of the details of the EPC reference as entered in the register maintained under Regulation 31.

Recommendations for improvements ~ in addition to an energy assessment survey and rating, the assessor is required to provide a report identifying areas that could improve the energy performance of a building. Examples may include cost-effective recommendations for cavity wall insulation, increased insulation in the roof space, provision of a central-heating room temperature control thermostat, double/secondary glazing, etc. These recommendations to include a cost analysis of capital expenditure relative to potential savings over time and enhanced asset rating that the building could attain.

Related refs.:
Building Regulation 29 − Declaration of giving an EPC.
Building Regulations Approved Document L.
Standard Assessment Procedure.
This certificate can be used to:

- Compare the energy efficiency with other properties/dwellings.
- Determine the potential economies of energy saving installations.

Estimated energy costs over 3 years: £3,750
Energy saving potential over 3 years: £1,330

Estimated energy costs of this dwelling over 3 years:

<table>
<thead>
<tr>
<th></th>
<th>Current cost</th>
<th>Potential cost</th>
<th>Potential savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>£380</td>
<td>£190</td>
<td>£190</td>
</tr>
<tr>
<td>Heating</td>
<td>£2,820</td>
<td>£1,980</td>
<td>£840</td>
</tr>
<tr>
<td>Hot water</td>
<td>£550</td>
<td>£250</td>
<td>£300</td>
</tr>
<tr>
<td>Totals</td>
<td>£3,750</td>
<td>£2,420</td>
<td>£1,330</td>
</tr>
</tbody>
</table>

Figures do not include costs of running subsidiary appliances such as TV, fridge, cooker, etc.

Energy Efficiency Rating:

Diagram shows current efficiency rating.
Higher the rating, the lower the fuel costs.

Potential rating includes recommendations indicated below.

Average rating for a dwelling in England and Wales is band D (60).

Recommended measures:

<table>
<thead>
<tr>
<th>Method</th>
<th>Indicative capital cost</th>
<th>Typical savings over 3 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase loft insulation</td>
<td>£150 - £350</td>
<td>£125</td>
</tr>
<tr>
<td>Solar photovoltaic panels</td>
<td>£9,000 - £14,000</td>
<td>£700</td>
</tr>
<tr>
<td>Low energy lighting throughout</td>
<td>£120</td>
<td>£150</td>
</tr>
</tbody>
</table>
A method statement precedes preparation of the project programme and contains the detail necessary for construction of each element of a building. It is prepared from information contained in the contract documents – see page 20. It also functions as a brief for site staff and operatives in sequencing activities, indicating resource requirements and determining the duration of each element of construction. It complements construction programming by providing a detailed analysis of each activity.

A typical example for foundation excavation could take the following format:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Quantity</th>
<th>Method</th>
<th>Output/hour</th>
<th>Labour</th>
<th>Plant</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip site for excavation</td>
<td>300 m2</td>
<td>Exc. to reduced level over construction area - JCB-4CX face shovel/loader. Topsoil retained on site.</td>
<td>50 m2/hr</td>
<td>Exc. driver +2 labourers</td>
<td>JCB-4CX backhoe/loader</td>
<td>0.75</td>
</tr>
<tr>
<td>Excavate for foundations</td>
<td>60 m3</td>
<td>Excavate foundation trench to required depth - JCB-4CX backhoe. Surplus spoil removed from site.</td>
<td>15 m3/hr</td>
<td>Exc. driver +2 labourers. Truck driver</td>
<td>JCB-4CX backhoe/loader. Tipper truck</td>
<td>0.50</td>
</tr>
<tr>
<td>PROJECT</td>
<td>TWO-STOREY OFFICE AND WORKSHOP</td>
<td>CONTRACT No. 1234</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONTH/YEAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATE: W/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity</th>
<th>Week No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set up site</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Level site and fill</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Excavate founds</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conc. foundations</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Brickwork < dpc</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ground floor</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Drainage</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Scaffold</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Brickwork > dpc</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1st. floor carcass</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Roof framing</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Roof tiling</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1st. floor deck</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Partitions</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1st. fix joiner</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1st. fix services</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Glazing</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Plaster & screed</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2nd. fix joiner</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2nd. fix services</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Paint & dec.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Floor finishes</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Fittings & fixtures</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Clean & make good</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Roads & landscape</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Clear site</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Commissioning</td>
<td></td>
</tr>
</tbody>
</table>

- **Activity Duration**: The duration of each activity is indicated by the shaded bars.
- **String Line**: Represents the planned completion or the actual progress.
- **Progress to Date**: Shows the current progress of the project.
- **Planned Completion**: Indicating the planned end date for each activity.

This Gantt chart provides a visual representation of the timeline for the construction project, allowing for clear tracking of progress against the planned schedule.
<table>
<thead>
<tr>
<th>Material</th>
<th>Weight (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRICKS, BLOCKS and PAVING –</td>
<td></td>
</tr>
<tr>
<td>Clay brickwork – 102.5 mm</td>
<td></td>
</tr>
<tr>
<td>low density</td>
<td>205</td>
</tr>
<tr>
<td>medium density</td>
<td>221</td>
</tr>
<tr>
<td>high density</td>
<td>238</td>
</tr>
<tr>
<td>Calcium silicate brickwork – 102.5 mm</td>
<td>205</td>
</tr>
<tr>
<td>Concrete blockwork, aerated</td>
<td>78</td>
</tr>
<tr>
<td>.. lightweight aggregate</td>
<td>129</td>
</tr>
<tr>
<td>Concrete flagstones (50 mm)</td>
<td>115</td>
</tr>
<tr>
<td>Glass blocks (100 mm thick) 150 × 150</td>
<td>98</td>
</tr>
<tr>
<td>.. 200 × 200</td>
<td>83</td>
</tr>
<tr>
<td>ROOFING –</td>
<td></td>
</tr>
<tr>
<td>Slates – see page 518</td>
<td></td>
</tr>
<tr>
<td>Thatching (300 mm thick)</td>
<td>40-00</td>
</tr>
<tr>
<td>Tiles – plain clay</td>
<td>63-50</td>
</tr>
<tr>
<td>.. plain concrete</td>
<td>93-00</td>
</tr>
<tr>
<td>.. single lap, concrete</td>
<td>49-00</td>
</tr>
<tr>
<td>Tile battens (50 × 25) and felt underlay</td>
<td>7-70</td>
</tr>
<tr>
<td>Bituminous felt underlay</td>
<td>1-00</td>
</tr>
<tr>
<td>Bituminous felt, sanded topcoat</td>
<td>2-70</td>
</tr>
<tr>
<td>3 layers bituminous felt</td>
<td>4-80</td>
</tr>
<tr>
<td>HD/PE breather membrane underlay</td>
<td>0-20</td>
</tr>
<tr>
<td>SHEET MATERIALS –</td>
<td></td>
</tr>
<tr>
<td>Aluminium (0-9 mm)</td>
<td>2-50</td>
</tr>
<tr>
<td>Copper (0-9 mm)</td>
<td>4-88</td>
</tr>
<tr>
<td>Cork board (standard) per 25 mm thickness</td>
<td>4-33</td>
</tr>
<tr>
<td>.. (compressed)</td>
<td>9-65</td>
</tr>
<tr>
<td>Hardboard (3-2 mm)</td>
<td>3-40</td>
</tr>
<tr>
<td>Glass (3 mm)</td>
<td>7-30</td>
</tr>
<tr>
<td>Lead (1-25 mm)</td>
<td>14-17</td>
</tr>
<tr>
<td>.. (3 mm)</td>
<td>34-02</td>
</tr>
<tr>
<td>Particle board/chipboard (12 mm)</td>
<td>9-26</td>
</tr>
<tr>
<td>.. (22 mm)</td>
<td>16-82</td>
</tr>
<tr>
<td>Planking, softwood strip flooring (ex 25 mm)</td>
<td>11-20</td>
</tr>
<tr>
<td>.. hardwood</td>
<td>16-10</td>
</tr>
<tr>
<td>Plasterboard (9-5 mm)</td>
<td>8-30</td>
</tr>
<tr>
<td>.. (12-5 mm)</td>
<td>11-00</td>
</tr>
<tr>
<td>.. (19 mm)</td>
<td>17-00</td>
</tr>
<tr>
<td>Plywood per 25 mm</td>
<td>15-00</td>
</tr>
<tr>
<td>PVC floor tiling (2-5 mm)</td>
<td>3-90</td>
</tr>
<tr>
<td>Strawboard (25 mm)</td>
<td>9-80</td>
</tr>
</tbody>
</table>
Typical Weights of Building Materials and Densities

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weatherboarding (20 mm)</td>
<td>7.68</td>
</tr>
<tr>
<td>Woodwool (25 mm)</td>
<td>14.50</td>
</tr>
<tr>
<td>INSULATION</td>
<td></td>
</tr>
<tr>
<td>Glass fibre thermal (100 mm)</td>
<td>2.00</td>
</tr>
<tr>
<td>Acoustic (100 mm)</td>
<td>4.00</td>
</tr>
<tr>
<td>APPLIED MATERIALS -</td>
<td></td>
</tr>
<tr>
<td>Asphalt (18 mm)</td>
<td>42</td>
</tr>
<tr>
<td>Plaster, 2 coat work</td>
<td>22</td>
</tr>
<tr>
<td>STRUCTURAL TIMBER:</td>
<td></td>
</tr>
<tr>
<td>Rafters and joists (100 × 50 @ 400 c/c)</td>
<td>5.87</td>
</tr>
<tr>
<td>Floor joists (225 × 50 @ 400 c/c)</td>
<td>14.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Approx. density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>1440</td>
</tr>
<tr>
<td>Concrete (aerated)</td>
<td>640</td>
</tr>
<tr>
<td>(broken brick)</td>
<td>2000</td>
</tr>
<tr>
<td>(natural aggregates)</td>
<td>2300</td>
</tr>
<tr>
<td>(no-fines)</td>
<td>1760</td>
</tr>
<tr>
<td>(reinforced)</td>
<td>2400</td>
</tr>
<tr>
<td>Metals:</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>2710</td>
</tr>
<tr>
<td>Brass</td>
<td>8500</td>
</tr>
<tr>
<td>Copper</td>
<td>8930</td>
</tr>
<tr>
<td>Lead</td>
<td>11325</td>
</tr>
<tr>
<td>Steel</td>
<td>7860</td>
</tr>
<tr>
<td>Tin</td>
<td>7300</td>
</tr>
<tr>
<td>Zinc</td>
<td>7140</td>
</tr>
<tr>
<td>Timber (softwood/pine)</td>
<td>480 (average)</td>
</tr>
<tr>
<td>(hardwood, e.g. maple, teak, oak)</td>
<td>720</td>
</tr>
<tr>
<td>Water</td>
<td>1000</td>
</tr>
</tbody>
</table>
Structural design of floors will be satisfied for most situations by using the minimum figures given for uniformly distributed loading (UDL). These figures provide for static loading and for the dynamics of occupancy. The minimum figures given for concentrated or point loading can be used where these produce greater stresses.

![Table](https://example.com/table.png)

Application	**UDL (kN/m²)**	**Concentrated (kN)**
Dwellings ~ | | |
Communal areas | 1.5 | 1.4 |
Bedrooms | 1.5 | 1.8 |
Bathroom/WC | 2.0 | 1.8 |
Balconies (use by one family) | | |
Commercial/Industrial ~ | | |
Hotel/motel bedrooms | 2.0 | 1.8 |
Communal kitchen | 3.0 | 4.5 |
Offices and general work areas | 2.5 | 2.7 |
Kitchens/laundries/ laboratories | 3.0 | 4.5 |
Factories and workshops | 5.0 | 4.5 |
Balconies – guest houses | 3.0 | 1.5/m run at outer edge |
Balconies – communal areas in flats | 3.0 | 1.5/m run at outer edge |
Balconies – hotels/motels | 4.0 | 1.5/m run at outer edge |
Warehousing/Storage ~ | | |
General use for static items | 2.0 | 1.8 |
Reading areas/libraries | 4.0 | 4.5 |
General use, stacked items | 2.4/m height | 7.0 |
Filing areas | 5.0 | 4.5 |
Paper storage | 4.0/m height | 9.0 |
Plant rooms | 7.5 | 4.5 |
Book storage | 2.4/m height (min. 6.5) | 7.0 |

See also:
BS EN 1991-1-1: Densities, self-weight, imposed loads for buildings.
BS EN 1991-1-3: Snow loads.
BS EN 1991-1-4: Wind actions.
Drawings — these are the principal means of communication between the designer, the builder and other parties to a contract. Drawings should therefore be clear, accurate, contain all the necessary information and be capable of being easily read.

Design practices have their own established symbols and notations for graphical communication. Some of these are shown on this and the next three pages. Other guidance can be found in BS EN ISOs 4157 and 7519.

Typical Examples—

- **outlines**

- **dimension and hatching lines**

- **hidden detail**

- **drain and pipe lines**

- **centre lines**

- **modular and coordinating dimension lines**

- **work size dimension lines**

- **controlling and grid lines**

LINES

DOORS
Hatchings ~ the main objective is to differentiate between the materials being used thus enabling rapid recognition and location. Whichever hatchings are chosen they must be used consistently throughout the whole set of drawings. In large areas it is not always necessary to hatch the whole area.

Symbols ~ these are graphical representations and should wherever possible be drawn to scale but above all they must be consistent for the whole set of drawings and clearly drawn.

Typical Examples

- Soil
- Hardcore
- Mass concrete
- Reinforced concrete
- Brickwork
- Blockwork
- Stonework
- Unwrot timber
- Wrot (wrought) or planed timber

Materials

- Hanging edge
- Side hung opening out
- Top hung opening out
- Bottom hung opening in
- Pivot
- Horizontal pivot
- Double hung or sliding sash

Windows
<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainwater pipe</td>
<td>☐</td>
<td>Distribution board</td>
<td>☐</td>
</tr>
<tr>
<td>Gully</td>
<td>☐</td>
<td>Electricity meter</td>
<td>☐</td>
</tr>
<tr>
<td>Inspection chambers</td>
<td>☐</td>
<td>Switched socket outlet</td>
<td>☐</td>
</tr>
<tr>
<td>Boiler</td>
<td>☐</td>
<td>Switch</td>
<td>☐</td>
</tr>
<tr>
<td>Sink</td>
<td>☐</td>
<td>Two-way switch</td>
<td>☐</td>
</tr>
<tr>
<td>Bath</td>
<td>☐</td>
<td>Pendant switch</td>
<td>☐</td>
</tr>
<tr>
<td>Wash basin</td>
<td>☐</td>
<td>Filament lamp</td>
<td>☐</td>
</tr>
<tr>
<td>Shower unit</td>
<td>☐</td>
<td>Fluorescent lamp</td>
<td>☐</td>
</tr>
<tr>
<td>Urinal</td>
<td>☐</td>
<td>Bed</td>
<td>☐</td>
</tr>
<tr>
<td>Water closet</td>
<td>☐</td>
<td>Table and chairs</td>
<td>☐</td>
</tr>
</tbody>
</table>

TYPICAL COMPONENT, FITMENT AND ELECTRICAL SYMBOLS
NB dimensions and full annotation omitted for clarity

TYPICAL PLAN OF A TWO-BEDROOM BUNGALOW
Principal legislation ~

Public Health Acts 1936 to 1961 - Limit development with regard to emission of noise, pollution and public nuisance.

Building Act 1984 - Effects the Building Regulations 2010, which enforce minimum material and design standards.

Civic Amenities Act 1967 - Establishes conservation areas, providing local authorities with greater control of development.

Town and Country Amenities Act 1974 - Local authorities empowered to prevent demolition of buildings and tree felling.

Procedure ~

Outline Planning Application - This is necessary for permission to develop a proposed site. The application should contain:

- An application form describing the work.
- A site plan showing adjacent roads and buildings (1:2500).
- A block plan showing the plot, access and siting (1:500).
- A certificate of land ownership.

Detail or Full Planning Application - This follows outline permission and is also used for proposed alterations to existing buildings.

It should contain: details of the proposal, to include trees, materials, drainage and any demolition.

- Site and block plans (as above).
- A certificate of land ownership.
- Building drawings showing elevations, sections, plans, material specifications, access, landscaping, boundaries and relationship with adjacent properties (1:100).

Permitted Developments - House extensions may be exempt from formal application. Conditions vary depending on house position relative to its plot and whether detached or attached. See next two pages.

Note: Most developments are subject to Building Regulation approval. Some exemptions are shown on page 69.

Certificates of ownership - Article 7 of the Town & Country Planning (General Development Procedure) Order 1995:

Cert. A - States the applicant is sole site freeholder (page 51).
Cert. B - States the applicant is part freeholder or prospective purchaser and all owners of the site know of the application (page 51).
Cert. C - As Cert. B, but the applicant is only able to ascertain some of the other landowners.
Cert. D - As Cert. B, but the applicant cannot ascertain any owners of the site other than him/herself.
Permitted development - on 1 October 2008 regulations were introduced to simplify the planning approval process for relatively small-scale construction work to existing houses. The approval, known as permitted development, to be undertaken without the cost and time-consuming process of formalising a detailed/full planning application to the local planning authority (LPA). Before October 2008 permitted development existed as a nominal volume percentage increase over the house size without much clarification beyond that. The new regulations, entitled The Town and Country Planning (General Permitted Development) (Amendment) (No.2) (England) Order 2008, will reduce the number of former planning applications by about a quarter. There are limitations for permitted development that relate to the position and size of a house as it stood on 1 July 1948 or when first built if later. Proposals for property enlargement beyond these constraints must be submitted for formal planning approval.

Application - permitted development applies specifically to extensions and alterations to houses, but not flats. This does not necessarily include all houses. Houses in conservation areas and those listed for historical interest may be excluded. The LPA should be consulted for clarification on all proposals, as planning departments will interpret the "Order" with regard to their locality. Exemption from the formal planning process does not include exemption from Building Regulation approval. Most extensions and some alterations will still require this (see pages 61 to 70).

Lawful Development Certificate (LDC) - this is an option that can be sought from the LPA. It is an alternative to submitting a full planning application where there is any doubt or ambiguity about work that would qualify for permitted development. It is not intended as a planning permit, but it is documented proof that the building created by extending or altering a house is lawful. Even if alterations are clearly defined by permitted development, the option of obtaining a LDC may be considered worthwhile to satisfy any queries if prospective future purchasers of the property require the work substantiated. As well as establishing the lawfulness of proposed work, an application for a LDC can be retrospective.

Limits and conditions, subject to LPA interpretation:

• Maximum of half the area of land around the house taken up with extension or other buildings (as the house stood on 1 July 1948 or when first built if later).

• No extension beyond the principal elevation or a side elevation that fronts a highway.

• Single-storey extension:
 - Attached house, max. 3m beyond the rear wall.
 - Detached house, max. 4m beyond the rear wall.

• Additional storeys to a rear extension, max. 3m in depth.

• Two-storey extension not closer than 7m to the rear boundary.

• Over one storey high, roof pitch to match existing.

• Max. eaves height of 3m if the extension is within 2m of a boundary.

• Max. eaves and ridge height no higher than existing.

• Side elevation extension max. 4m height. Width not greater than half that of the original house (see above, re. 1948).

• Materials to match existing.

• No verandas, balconies or raised platforms (> 300mm high).

• No chimney, flue or discharge stack installation, alteration or replacement if it exceeds the highest part of the roof by 1 m.

• Upper floor extension with side-facing windows obscure glazed.

• Upper floor side-facing extension windows to be non-opening or if openable the opening parts at least 1.7 m above floor.

• In conservation areas, subject to LPA agreement, single-storey rear extension only. No exterior cladding and no side extensions.

• No enlargement, additions or alterations to a roof to extend beyond the plane of slope of the existing roof which forms the principal elevation of the house and fronts a highway. An exception of up to 150mm perpendicular to the plane may be permitted.

• Roof space extension:
 - Terraced house, 40m3 max. increase over the existing roof space.
 - Semi-detached or detached house, 50m3 max. increase over the existing roof space.

• Porch outside of an external door:
 - External ground area not to exceed 3m2.
 - Height above the ground not to exceed 3m.
 - Greater than 2m from a boundary with a highway.

• Driveway or paving exceeding 5m2 to be of gravel, porous asphalt or any other material that will allow the drainage of water.
PLANNING APPLICATION

Use this form to apply for Planning Permission for:-
- an Extension
- a High Wall or Fence
- a Loft Conversion
- a Garage or Outbuilding
- a New or Altered Access
- a Satellite Dish

Please return:-
- 6 copies of the Form
- 6 copies of the Plans
- a Certificate under Article 7
- the correct fee

1. NAME AND ADDRESS OF APPLICANT

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Post Code</th>
<th>Tel. No.</th>
</tr>
</thead>
</table>

2. NAME AND ADDRESS OF AGENT (If Used)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Post Code</th>
<th>Tel. No.</th>
</tr>
</thead>
</table>

3. ADDRESS OF PROPERTY TO BE ALTERED OR EXTENDED

<table>
<thead>
<tr>
<th>Property Details</th>
</tr>
</thead>
</table>

4. OWNERSHIP

Please indicate applicants interest in the property and complete the appropriate Certificate under Article 7.

- [] Freeholder
- [] Other
- [] Leaseholder
- [] Purchaser

5. BRIEF DESCRIPTION OF WORKS (include any demolition work)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
</table>

6. DESCRIPTION OF EXTERNAL MATERIALS

<table>
<thead>
<tr>
<th>Materials</th>
</tr>
</thead>
</table>

7. ACCESS AND PARKING

Will your proposal affect? Please tick appropriate boxes

- Vehicular Access [] Yes [] No
- A Public Right of Way [] Yes [] No
- Existing Parking [] Yes [] No

8. DRAINAGE

a. Please indicate method of Surface Water Disposal

- [] Mains Sewer
- [] Septic Tank
- [] Cesspit
- [] Other

b. Please indicate method of Foul Water Disposal

Please tick one box

- [] Mains Sewer
- [] Septic Tank
- [] Cesspit
- [] Other

9. TREES

Does the proposal involve the felling of any trees? Please tick box

- [] Yes [] No

If yes, please show details on plans

10. PLEASE SIGN AND DATE THIS FORM BEFORE SUBMITTING

I/We hereby apply for Full Planning Permission for the development described above and shown on the accompanying plans.

Signed ____________________________ Date ________________

Date ____________________________

On behalf of (if agent) ____________________________
Use this form to apply for **Planning Permission for:**

- Outline Permission
- Full Permission
- Approval of Reserved Matters
- Renewal of Temporary Permission
- Change of Use

1. NAME AND ADDRESS OF APPLICANT

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Post Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Day Tel. No. Fax No. Email: ________________________________

2. NAME AND ADDRESS OF AGENT (If Used)

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Post Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tel. No. Fax No. Email: ________________________________

3. ADDRESS OR LOCATION OF LAND TO WHICH APPLICATION RELATES

- [] State Site Area ________________ Hectares
- [] This must be shown edged in Red on the site plan

4. OWNERSHIP

- [] Freeholder
- [] Leaseholder
- [] Purchaser

Please indicate applicants interest in the property and complete the appropriate Certificate under Article 7.

Any adjoining land owned or controlled and not part of application must be edged Blue on the site plan

5. WHAT ARE YOU APPLYING FOR?

Please tick one box and then answer relevant questions.

- [] **Outline Planning Permission** Which of the following are to be considered?
 - [] Siting
 - [] Design
 - [] Appearance
 - [] Access
 - [] Landscaping

- [] **Full Planning Permission/Change of Use**

- [] **Approval of Reserved Matters following Outline Permission**

O/P No. Date No. of Condition this application refers to: ____________________________

- [] **Continuance of Use without complying with a condition of previous permission**

P/P No. Date No. of Condition this application relates to: ____________________________

- [] **Permission for Retention of works.**

Date of use of land or when buildings or works were constructed: _____ Length of temporary permission: _____

Is the use temporary or permanent? ________ No. of previous temporary permission if applicable: ________

6. BRIEF DESCRIPTION OF PROPOSED DEVELOPMENT

Please indicate the purpose for which the land or buildings are to be used.

__

* Please return:
 - 6 copies of the Form
 - 6 copies of the Plans
 - a Certificate under Article 7
 - the correct fee

DATE RECEIVED DATE VALID
7. NEW RESIDENTIAL DEVELOPMENTS. Please answer the following if appropriate:

What type of building is proposed? ________________________________

No. of dwellings: ___________ No. of storeys: ___________ No. of habitable rooms: ___________

No. of garages: ___________ No. of parking spaces: ___________ Total grass area of all buildings: ______

How will surface water be disposed of? ________________________________

How will foul sewage be dealt with? ________________________________

8. ACCESS

Does the proposed development involve any of the following? Please tick the appropriate boxes.

- New access to a highway □ Pedestrian □ Vehicular
- Alteration of an existing highway □ Pedestrian □ Vehicular
- The felling of any trees □ Yes □ No

If you answer Yes to any of the above, they should be clearly indicated on all plans submitted.

9. BUILDING DETAIL

Please give details of all external materials to be used, if you are submitting them at this stage for approval.

__

List any samples that are being submitted for consideration.

__

10. LISTED BUILDINGS OR CONSERVATION AREA

Are any listed buildings to be demolished or altered? □ Yes □ No

If Yes, then Listed Building Consent will be required and a separate application should be submitted.

Are any non-listed buildings within a Conservation Area to be demolished? □ Yes □ No

If Yes, then Conservation Area consent will be required to demolish. Again, a separate application should be submitted.

11. NOTES

A special Planning Application Form should be completed for all applications involving Industrial, Warehousing, Storage, or Shopping development.

An appropriate Certificate must accompany this application unless you are seeking approval to Reserved Matters. A separate application for Building Regulation approval is also required.

Separate applications may also be required if the proposals relate to a listed building or non-listed building within a Conservation Area.

12. PLEASE SIGN AND DATE THIS FORM BEFORE SUBMITTING

I/We hereby apply for Planning Permission for the development described above and shown on the accompanying plans.

Signed ________________________________
TOWN AND COUNTRY PLANNING ACT
TOWN AND COUNTRY PLANNING (General Development Procedure) ORDER
Certificates under Article 7 of the Order

CERTIFICATE A For Freehold Owner (or his/her Agent)

I hereby certify that:-

1. No person other than the applicant was an owner of any part of the land to which the application relates at the beginning of the period of 21 days before the date of the accompanying application.

2. *Either (i) None of the land to which the application relates constitutes or forms part of an agricultural holding:

 *or (ii) *(I have) (the applicant has) given the requisite notice to every person other than *(myself) (himself) (herself) who, 21 days before the date of the application, was a tenant of any agricultural holding any part of which was comprised in the land to which the application relates, viz:-

Name and Address of Tenant...
..
...

Signed Date..........................

Date of Service of Notice.. *On Behalf of

CERTIFICATE B For Part Freehold Owner or Prospective Purchaser (or his/her Agent) able to ascertain all the owners of the land

I hereby certify that:-

1. *(I have) (the applicant has) given the requisite notice to all persons other than (myself) (the applicant) who, 21 days before the date of the accompanying application were owners of any part of the land to which the application relates, viz:-

Name and Address of Owner
..

Date of Service of Notice

2. *Either (i) None of the land to which the application relates constitutes or forms part of an agricultural holding;

 *or (ii) *(I have) (the applicant has) given the requisite notice to every person other than *(myself) (himself) (herself) who, 21 days before the date of the application, was a tenant of any agricultural holding any part of which was comprised in the land to which the application relates, viz:-

Name and Address of Tenant..............................
..

Signed Date..........................
Modular Coordination ~ a module can be defined as a basic dimension which could, for example, form the basis of a planning grid in terms of multiples and submultiples of the standard module.

Typical Modular Coordinated Planning Grid ~

Let \(M \) = the standard module

![Diagram of grids](image)

- **Structural Grid** ~ used to locate structural components such as beams and columns.
- **Planning Grid** ~ based on any convenient modular multiple for regulating space requirements such as rooms.
- **Controlling Grid** ~ based on any convenient modular multiple for location of internal walls, partitions, etc.
- **Basic Module Grid** ~ used for detail location of components and fittings.

All the above grids, being based on a basic module, are contained one within the other and are therefore interrelated. These grids can be used in both the horizontal and vertical planes, thus forming a three-dimensional grid system. If a first preference numerical value is given to \(M \) dimensional coordination is established – see next page.

Ref. BS 6750: Specification for modular coordination in building.
Dimensional Coordination — the practical aims of this concept are to:

1. Size components so as to avoid the wasteful process of cutting and fitting on site.
2. Obtain maximum economy in the production of components.
3. Reduce the need for the manufacture of special sizes.
4. Increase the effective choice of components by the promotion of interchangeability.

BS 6750 specifies the increments of size for coordinating dimensions of building components thus:

<table>
<thead>
<tr>
<th>Preference</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm)</td>
<td>300</td>
<td>100</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

the 3rd and 4th preferences having a maximum of 300 mm

Dimensional Grids — the modular grid network as shown on page 52 defines the space into which dimensionally coordinated components must fit. An important factor is that the component must always be undersized to allow for the joint which is sized by the obtainable degree of tolerance and site assembly:

Controlling Lines, Zones and Controlling Dimensions — these terms can best be defined by example:
Construction Regulations - these are Statutory Instruments made under the Factories Acts of 1937 and 1961. They are now largely superseded by the Health and Safety at Work, etc. Act 1974, but still have relevance to aspects of hazardous work on construction sites. The requirements contained within these documents must therefore be taken into account when planning construction operations and during the actual construction period. Reference should be made to the relevant document for specific requirements but the broad areas covered can be shown thus:

- **Factories Acts 1937 and 1961**
- Health and Safety at Work, etc. Act 1974: governs powers of Inspectors regarding safe practices on sites together with contravention of the Construction Regulations.
- Management of Health and Safety at Work Regulations 1999: Duties of Implementation.
- **Construction Regulations**: applies to building operations and to works of engineering construction.
- **Control of Substances Hazardous to Health Act, COSH 2002**
- The Construction (Design and Management) Regulations 2007: Application and management of Health and Safety at Work Regulations: Client responsibility for appointment of a 'CDM Coordinator' and 'Principal Contractor'.
- The Construction (Head Protection) Regulations 1989 and the Personal Protective Equipment Regulations 2002:
- Lifting Operations and Lifting Equipment Regulations 1998:
- The Construction (Health, Safety and Welfare) Regulations 1996, now revoked and incorporated within the CDM Regs: Objectives for the well-being of site personnel with specific regard to:
- The Work at Height Regulations 2005: Scaffold, means of access, platform width, support, safety, guarding and inspection.
Objective – To create an all-party integrated and planned approach to health and safety throughout the duration of a construction project.

Administering Body – The Health and Safety Executive (HSE).

Scope – The CDM Regulations are intended to embrace all aspects of construction, with the exception of very minor works.

Responsibilities – The CDM Regulations apportion responsibility to everyone involved in a project to cooperate with others and for health and safety issues to all parties involved in the construction process, i.e. client, designer, CDM coordinator and principal contractor.

Client – Appoints a CDM coordinator and the principal contractor. Provides the CDM coordinator with information on health and safety matters and ensures that the principal contractor has prepared an acceptable construction phase plan for the conduct of work. Ensures adequate provision for welfare and that a health and safety file is available.

Designer – Establishes that the client is aware of their duties. Considers the design implications with regard to health and safety issues, including an assessment of any perceived risks. Coordinates the work of the CDM coordinator and other members of the design team.

CDM Coordinator – Ensures that:
• A pre-tender, construction phase plan is prepared.
• The HSE are informed of the work.
• Designers are liaising and conforming with their health and safety obligations.
• A health and safety file is prepared.
• Contractors are of adequate competence with regard to health and safety matters and advises the client and principal contractor accordingly.

Principal Contractor – Develops a construction phase plan, collates relevant information and maintains it as the work proceeds. Administers day-to-day health and safety issues. Cooperates with the CDM coordinator, designers and site operatives preparing risk assessments as required.

Note: Requirements defined under the withdrawn Construction (Health, Safety and Welfare) Regulations are incorporated into the CDM Regulations.
Under these regulations, employers are required to provide and maintain health and safety signs conforming to European Directive 92/58 EEC:

PROHIBITION

HAZARD/WARNING

MANDATORY

SAFE CONDITION

Red

Yellow

Blue

Green

In addition, employers’ obligations include the need to provide:

Risk Assessment – provide and maintain safety signs where there is a risk to health and safety, e.g. obstacles. Train staff to comprehend safety signs.

Pictorial Symbols – pictograms alone are acceptable but supplementary text, e.g. FIRE EXIT, is recommended.

Fire/Emergency Escape Signs – A green square or rectangular symbol.

Positioning of signs – primarily for location of fire exits, fire equipment, alarms, assembly points, etc. Not to be located where they could be obscured.

Pipeline Identification – pipes conveying dangerous substances to be labelled with a pictogram on a coloured background conforming to BS 1710: Specification for identity of pipelines and services and BS 4800: Schedule of paint colours for building purposes. Non-dangerous substances should also be labelled for easy identification.
Typical Examples on Building Sites ~

PROHIBITION (Red)

- Authorized personnel only
- Children must not play on this site
- Smoking prohibited
- Access not permitted

HAZARD/WARNING (Yellow)

- Dangerous substance
- Flammable liquid
- Danger of electric shock
- Compressed gas

MANDATORY (Blue)

- Safety helmets must be worn
- Protective footwear must be worn
- Use ear protectors
- Protective clothing must be worn

SAFE CONDITIONS (Green)

- Emergency escapes
- Treatment area
- Safe area

Ref. BS ISO 3864-1: Graphical symbols. Safety colours and safety signs. Design principles for safety signs and safety markings.
Control over the way that buildings are constructed originated from attempts to regulate development density in response to demand for more living space as city populations increased. Although there is little surviving documentation to support effective building controls from the time, archived records of London dating from the 12th century do provide some indication that communal issues of convenience and privacy were monitored by the city administration. These included provisions for sanitation, dividing walls and control over encroachment.

Throughout the latter part of the Middle Ages (about 1200 to 1500), regulation in London was haphazard and spontaneous, usually effected on the basis of complaints about building nuisance, whereby the city mayor and aldermen presided over a court hearing. The outcome was determined on the complainant’s evidence and expert reports from appointed surveyors. An exception was an overall ban on thatched roofs in London following a serious spread of fire in 1212.

Other densely populated cities established their own means for controlling building work. Fire hazard was the principle criteria and restrictions were applied to limit the ever rising timber framed houses where storeys were built upon existing storeys and extensive jetties of dubious construction overhung the streets below.

The bubonic plague (1665 to 1666) followed by the Great Fire of London (1666) provided an unplanned opportunity to significantly reconsider procedures for new building work. Redevelopment with regard to better living standards and the health and safety of building occupants resulted from the introduction of the London Building Act in 1667. This Act enabled city surveyors to enforce regulations which included:

- Non-combustible material for the main structure, i.e. brick or stone.
- Wall thickness of a minimum specification.
- Limited storey height.
- No projections or jetties over the streets below.
- Minimum street widths to function as fire breaks.

London Building Acts of 1707, 1709, 1764 and 1772 widened control of building development to suburban areas beyond the city boundary. Further provisions prohibited the use of timber for application to decorative cornices and established minimum heights for parapet walls.
London Building Act 1774 ~ known as the Black Act, consolidated previous Building Acts as well as determining acceptable construction methods for the whole of London’s suburban areas. It remained effective well into the 19th. century, until the introduction of the Metropolitan Building Act of 1844. The main objective of the 1774 Act was to fire proof the exterior of buildings by prohibiting superfluous use of timber ornamentation and other wooden features. An exception was made for timber doors and window frames. These were permitted if recessed at least 4” (100mm) behind the wall face. The London Building Acts were emulated throughout other provincial towns and cities in the UK. This was mainly in response to outbreaks of fire spreading between cheaply constructed and uncontrolled, overdeveloped timber housing.

Metropolitan Building Act 1844 ~ this extended the area around London covered by building controls. It empowered the appointment of district surveyors to visit building sites and inspect work in progress.

Public Health Act 1848 ~ created municipal Boards of Health through local authorities in England and Wales. Mandatory provisions included minimum standards for structural stability, sanitation, light and ventilation and for the prevention of dampness in buildings.

Local Government Act 1858 ~ extended the powers of local authorities to supervise and control building construction through bye-laws. The national government published guidelines known as the Form of Bye-laws which were adopted by most local authorities. These permitted LAs to demand deposit of plans and specifications for new building work and substantial alterations to existing buildings.

Public Health Act 1875 ~ consolidated existing building control legislation for England and Wales. Ireland and Scotland passed similar legislation in 1878 and 1897 respectively. The most notable provision was a requirement for installation of damp proof courses in walls.

Thereafter, LAs administered their own interpretation of building control through their bye-laws. This presented problems, as standards varied throughout the UK. It was not until the mid-20th century that some form of unification was introduced.
Public Health Act 1936 ~ this covered all buildings intended for human occupation and was primarily concerned with provisions for drainage and sanitation. Empowered LAs with responsibility for adoption and maintenance of public sewers and drains. Introduced new guidelines in the form of model bye-laws which LAs could enforce.

Model Bye-laws 1952 ~ produced as a means for unifying the standards of building throughout England and Wales. One model for all areas was designed to avoid urban and rural variations in performance standards. Introduced deemed to satisfy provisions with reference to established quality benchmarks such as British Standards.

Building (Scotland) Act 1959 ~ enabled Scotland to adopt national building standards which formed the first Building Regulations in the UK. These came into force in 1964.

Public Health Act 1961 ~ statutory unification of building standards that became the forerunner to the first Building Regulations. Proposed replacement of local bye-laws with nationally acceptable regulations. Central government responsibility for establishing minimum building standards administered through the LAs of England and Wales.

Building Regulations 1966 on ~ the first unified regulations made as a statutory instrument. Excluded inner London, Scotland and Ireland. In 1972 amendments and updates were issued as a second edition. In the same year the Building Regulations (Northern Ireland) Order was established as the first regulations for that region. These were modeled closely on the second edition for England and Wales. In 1976, further amendments were consolidated into the third edition, which incorporated Approved Documents as deemed to satisfy practice guidelines that could be used to satisfy the regulations.

Building Act 1984 ~ consolidated various other building legislation and redefined the Building Regulations. From 1985 the regulations were based on performance and presented in a simpler format. Previous editions were considered too prescriptive, confusing and inflexible. That year the Building (Inner London) Regulations incorporated most of the 1985 regulations for England and Wales with some limited exceptions. Bye-laws made under the previous London Acts no longer applied. In 2012 Wales determined its own building regulations.
The Building Regulations ~ this is a Statutory Instrument which sets out the minimum performance standards for the design and construction of buildings and where applicable to the extension and alteration of buildings. The regulations are supported by other documents which generally give guidance on how to achieve the required performance standards. The relationship of these and other documents is set out below:

Building Regulations apply throughout the UK. Specific requirements for England, Wales, Scotland and Northern Ireland are administered by their regional governments.
Approved Documents — these publications support the Building Regulations. They are prepared by the Department for Communities and Local Government, approved by the Secretary of State and issued by The Stationery Office. The Approved Documents (ADs) have been compiled to give practical guidance to comply with the performance standards set out in the various Regulations. They are not mandatory but show compliance with the requirements of the Building Regulations. If other solutions are used to satisfy the requirements of the Regulations, proving compliance rests with the applicant or designer.

| Approved Document A — STRUCTURE |
| Approved Document B — FIRE SAFETY |
| Volume 1 — Dwelling houses |
| Volume 2 — Buildings other than dwelling houses |
| Approved Document C — SITE PREPARATION AND RESISTANCE TO CONTAMINANTS AND MOISTURE |
| Approved Document D — TOXIC SUBSTANCES |
| Approved Document E — RESISTANCE TO THE PASSAGE OF SOUND |
| Approved Document F — VENTILATION |
| Approved Document G — SANITATION, HOT WATER SAFETY AND WATER EFFICIENCY |
| Approved Document H — DRAINAGE AND WASTE DISPOSAL |
| Approved Document J — COMBUSTION APPLIANCES AND FUEL STORAGE SYSTEMS |
| Approved Document K — PROTECTION FROM FALLING, COLLISION AND IMPACT |
| Approved Document L — CONSERVATION OF FUEL AND POWER |
| L1A — New dwellings |
| L1B — Existing dwellings |
| L2A — New buildings other than dwellings |
| L2B — Existing buildings other than dwellings |
| Approved Document M — ACCESS TO AND USE OF BUILDINGS |
| Approved Document P — ELECTRICAL SAFETY-DWELLINGS |
| Approved Document to support Regulation 7 |
| MATERIALS AND WORKMANSHIP |
Example in the Use of Approved Documents ~

Problem: the sizing of suspended upper floor joists to be spaced at 400mm centres with a clear span of 3.600m for use in a two-storey domestic dwelling.

Building Regulation A1: states that the building shall be constructed so that the combined dead, imposed and wind loads are sustained and transmitted by it to the ground –

(a) safely, and
(b) without causing such deflection or deformation of any part of the building, or such movement of the ground, as will impair the stability of any part of another building.

Solution: uniformly distributed load not exceeding 1.5 kN/m²

Dead load (kN/m²) supported by joist excluding mass of joist:

- Floor finish — carpet — 0.03
- Flooring — 20mm thick particle board — 0.15
- Ceiling — 9.5mm thick plasterboard 0.08
- Ceiling finish — 3mm thick plaster — 0.04

Total dead load = 0.30 kN/m²

Dead loading is therefore in the 0.25 to 0.50 kN/m² band

From table on page 776 suitable joist sizes are: 38 × 200, 50 × 175, 63 × 175 and 75 × 150.

Final choice of section to be used will depend upon cost: availability; practical considerations and/or personal preference.
Building Control ~ unless the applicant has opted for control by a private approved inspector under The Building (Approved Inspectors, etc.) Regulations 2010 the control of building works in the context of the Building Regulations is vested in the Local Authority. There are two systems of control: namely the Building Notice and the Deposit of Plans. The sequence of systems is shown below:

Building Notice:
- Written submission to LA with block plans and drainage details for new work. Not applicable for non-residential buildings and most buildings designated under the Regulatory Reform Order (Fire Safety).

Deposit of Plans:
- Submission of full plans and statutory fee to LA.
- Approval decision within 5 weeks or 2 months by mutual agreement.
- Approval which can be partial or conditional by mutual agreement.

If required:
- Certificates of compliance by an approved person in the context of the structural design and the conservation of energy.

Notice of rejection:
- Appeal to the Secretary of State.

Inspections carried out:
- Work acceptable to LA.
- Contravention found by building inspector.
- Contravention corrected.

Written or other notices to LA:
- 48 hrs. before commencement
- 24 hrs. before excavations covered
- Before damp course covered
- Before site concrete covered
- Before drains covered
- 7 days after drains completed

If application complies with the Section 36 Notice:
- Applicant can appeal to a Magistrate’s Court within 70 days of a Section 36 Notice being served.

LA accepts submission and withdraws Section 36 Notice:
- LA rejects submission.
- Application complies with the Section 36 Notice.

NB. In some stages of the above sequence statutory fees are payable as set out in The Building (Local Authority Charges) Regulations 2010.
Building Regulations Approval ~ required if “Building Work” as defined in Regulation 3 of the Building Regulations is proposed. This includes:

- Construction or extension of a building.
- Alterations to an existing building that would bring into effect any of the complying regulations.
- Installing replacement windows where the installer is not known to the local Building Control Authority as being a ‘competent’ registered installer, e.g. FENSA (FENestration Self-Assessment) scheme.
- Alteration or installation of building services and fittings that bring into effect any of the complying regulations.
- Installation of cavity wall insulation.
- Underpinning of a building’s foundations.
- Change of purpose or use of a building.

‘Competent’ persons are appropriately qualified and experienced to the satisfaction of a relevant scheme organiser. For example, Capita Group’s ‘Gas Safe Register’ of engineers for gas installation and maintenance services. They can ‘self-certify’ that their work complies with Building Regulations, thereby removing the need for further inspection (see next page).

Local Authority Building Control ~ the established procedure as set out diagrammatically on the preceding page with an application form of the type shown on page 70 and accompanying documents as indicated on page 68.

Private Sector Building Control ~ an alternative, where suitably qualified and experienced inspectors approved by the Local Authority undertake the application approval and site inspections. An ‘Initial Notice’ from the client and their appointed inspector is lodged with the Local Authority.

Whichever building control procedure is adopted, the methodology is the same, i.e. Deposit of Plans or Building Notice (see page 68).

Refs.: The Building (Approved Inspectors, etc.) Regulations.
 The Association of Consultant Approved Inspectors.
Benchmark Checklist — an initiative that places responsibilities on manufacturers and installers to provide equipment of an appropriate standard for the situation. Further requirements are that it is installed, commissioned and serviced to the manufacturer’s requirements in accordance with the relevant Building Regulations.

Some Examples of Building Regulations Notification Work Acceptable by Registered Competent Persons — air pressure testing, cavity wall insulation, electrical and gas installation, micro-generation installation, renewable technologies and replacement windows.
Local Authority Building Control ~ as described in the previous two pages. A public service administered by borough and unitary councils through their building control departments.

Approved Inspectors ~ a private sector building control alternative as outlined on the preceding page. Approved inspectors may be suitably qualified individuals or corporate bodies employing suitably qualified people, e.g. National House Building Council (NHBC Ltd) and MD Insurance Services Ltd.

Borough councils can contract out the building control process to approved inspectors. Validation and site examinations follow the established format shown on page 64, with approved inspectors substituting for LA.

Both NHBC and MD Insurance publish their own construction rules and standards that supplement the Building Regulations. These form the basis for their own independent quality control procedures whereby their Inspectors will undertake stage and periodic examinations of work in progress to ensure that these standards are adhered to. The objective is to provide new home buyers with a quality assured product warranted against structural defects (10–15 years), provided the house builder has satisfied certain standards for registration. Therefore, the buyer should be provided with a completion certificate indicating Building Regulations approval and a warranty against defects.

Robust Details ~ Building Regulations A.D. E ~ Resistance to the passage of sound: requires that the separating walls, floors and stairs in new dwellings are sufficiently resistant to airborne and impact sound transmission. Sound measurement tests defined in the associated BSs specified in the Approved Document must be undertaken by an approved inspector/building control official before completion.

An alternative or a means for exemption of pre-completion testing is for the builder to notify the building inspector that sound insulation construction details are registered and specified to those approved by Robust Details Ltd. This is a not-for-profit company established by the house building industry to produce guidance manuals containing details of acceptable sound resistant construction practice.
Deposit of Plans or Full Plans Application ~

- Application form describing the proposed work.
- Location plan, scale not less than 1:2500.
- Block plan, scale not less than 1:1250 showing north point, lines of drains (existing and proposed) and size and species of trees within 30m.
- Plans, sections and elevations, scale not less than 1:50 (1:100 may be acceptable for elevations).
- Materials specification.
- Structural calculations where appropriate, e.g. load-bearing beams.
- Fee depending on a valuation of work.

The appointed inspector examines the application and, subject to any necessary amendments, an approval is issued. This procedure ensures that work on site is conducted in accordance with the approved plans. Also, where the work is being financed by a loan, the lender will often insist the work is only to a Full Plans approval.

Building Notice ~

- A simplified application form.
- Block plan as described above.
- Construction details, materials specification and structural calculations if considered necessary by the inspector.
- Fee depending on a valuation of work.

This procedure is only really appropriate for minor work, for example, extensions to existing small buildings such as houses. Building control/inspection occurs as each element of the work proceeds. Any Building Regulation contravention will have to be removed or altered to attain an acceptable standard.

Regularisation ~

- Application form.
- Structural calculations if relevant.
- A proportionally higher fee.

Applies to unauthorised work undertaken since November 1985. In effect a retrospective application that will involve a detailed inspection of the work. Rectification may be necessary before approval is granted.
Small detached buildings:-
1. floor area < 15m² not containing sleeping accommodation, or
2. floor area < 30m² not containing sleeping accommodation, and either:
 - constructed substantially from non-combustible materials, or
 - located in excess of 1m from the boundary

The guidance shown indicates the categories of buildings that do not normally require submission of a Building Notice or Deposit of Plans for approval by the Building Control Section of the Local Authority. However, they may still require planning permission – see page 45.

* Single storey ground level additions which are not open to the house and are < 30m² floor area, to include carport, covered yard, conservatory and porch.

Notes:
1. a carport must be open on at least two sides.
2. conservatories must have fully glazed laminated or toughened glass, or translucent plastic roofs.
3. glazed doors and windows in a porch or conservatory as defined in Buildings Regulations Approved Document K – see page 458
4. single storey additions should not impede escape from an upper floor window specified for emergency egress. Building Regulations, A.D.: B1 Section 2

see note 2 above
BUILDING REGULATIONS APPLICATION

Use this form to give notice of intention to erect, extend, or alter a building, install fittings or make a material change of use of the building.

Unless specified differently overleaf, Please return:-
- 2 copies of the Form
- 4 copies of the Plans
- the correct fee

<table>
<thead>
<tr>
<th>APPLICATION No</th>
<th>DATE RECEIVED</th>
</tr>
</thead>
</table>

1. NAME AND ADDRESS OF APPLICANT

Applicant will be invoiced on commencement of work.

- []
- []
- []

Post Code ____________________

Tel. No. ____________________

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

2. NAME AND ADDRESS OF AGENT (If Used)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Post Code ____________________

Tel. No. ____________________

3. ADDRESS OR LOCATION OF PROPOSED WORK

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

4. DESCRIPTION OF PROPOSED WORKS

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

5. IF NEW BUILDING OR EXTENSION PLEASE STATE PROPOSED USE

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

6. IF EXISTING BUILDING PLEASE STATE PRESENT USE

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

7. DRAINAGE

Please state means of:-

- Water Supply
- Foul Water Disposal
- Storm Water Disposal

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

8. CONDITIONS

Do you consent to the Plans being passed subject to conditions where appropriate? Yes [] No []

Do you agree to an extension of time if this is required by the Council? Yes [] No []

9. COMPLETION CERTIFICATE

Do you wish the Council to issue a Completion Certificate upon satisfactory completion of the work? Yes [] No []

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

10. REGULATORY REFORM ORDER (Fire Safety) 2005

Is the building intended for any other purpose than occupation as a domestic living unit by one family group? Yes [] No []

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

11. FEE

Please state estimated cost of the work (at current market value) £________________________ Amount of Fee submitted £________________________

Has Planning Permission been sought? Yes [] No [] If Yes, please give Application No __________________________

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

12. PLEASE SIGN AND DATE THIS FORM BEFORE SUBMITTING

I/we hereby give notice of intention to carry out the work set out above and deposit the attached drawings and documents in accordance with the requirements of Regulations 11 (1) (b). Also enclosed is the appropriate Plan Fee and I understand that a further Fee will be payable when the first inspection of work on site is made by the Local Authority.

Signed ___________________________ Date ___________ On behalf of (if agent) ___________________________

[]

70
Purpose ~ to provide a checklist that assists designers and builders to attain performance standards that will satisfy the energy efficiency requirements of Part L to the Building Regulations. Also, to provide a measure against which the building control inspectorate can ensure conformity.

Documentation ~ a UK Department for Communities and Local Government (DCLG) publication. This contains a series of construction details that are applied to five different building techniques. The fully detailed illustrations are for relatively light construction appropriate to dwellings. The details and supplementary support notes concentrate on continuity of thermal insulation with a regard for thermal (cold) bridging and on quality of construction to maintain airtightness.

Publication sections and details ~
Section 1: Introduction relating mainly to continuity of insulation and airtightness.
Section 2: Detailed drawings and checklists for constructing the external envelope.

The five types of construction are:
• Externally insulated masonry solid walls.
• Part and fully filled cavity insulated masonry walls.
• Internally insulated masonry walls.
• Timber framed walls.
• Lightweight steel framed walls.

Note: All five construction practice details include the critical areas of junctions and interfaces between wall and roof, ground and intermediate floors. Treatment at door and window openings is also included with specific applications where appropriate.

Refs.:
Accredited Construction Details, Communities and Local Government publications.
Published ~ 2006 by the Department for Communities and Local Government (DCLG) in response to the damaging effects of climate change. The code promotes awareness and need for new energy conservation initiatives in the design of new dwellings.

Objective ~ to significantly reduce the 27% of UK CO₂ emissions that are produced by 25 million homes. This is to be a gradual process, with the target of reducing CO₂ and other greenhouse gas emissions from all UK sources by 80% by 2050 relative to 1990 levels. Interim objectives are 28% by 2017, 34% by 2022 and 50% by 2027.

Sustainability ~ measured in terms of a quality standard designed to provide new homes with a factor of environmental performance. This measure is applied primarily to categories of thermal energy, use of water, material resources, surface water run-off and management of waste.

Measurement ~ a ‘green’ star rating that indicates environmental performance ranging from one to six stars. Shown below is the star rating criteria applied specifically to use of thermal energy. A home with a six star rating is also regarded as a Zero Carbon Home.

Proposed Progression ~

<table>
<thead>
<tr>
<th>Percentage Improvement compared with A.D. L 2006</th>
<th>Year</th>
<th>Code level star rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>2010</td>
<td>3</td>
</tr>
<tr>
<td>44</td>
<td>2013</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>2016</td>
<td>5 and 6</td>
</tr>
</tbody>
</table>

Zero Carbon Home ~ zero net emissions of CO₂ from all energy use in the home. This incorporates insulation of the building fabric, heating equipment, hot water systems, cooling, washing appliances, lighting and other electrical/electronic facilities. Net zero emissions can be measured by comparing the carbon emissions produced in consuming on- or off-site fossil fuel energy use in the home, with the amount of on-site renewable energy produced. Means for producing low or zero carbon energy include micro combined heat and power units, photovoltaic (solar) panels, wind generators and ground energy heat pumps (see Building Services Handbook).
British Standards - these are publications issued by the British Standards Institution which give recommended minimum standards for materials, components, design and construction practices. These recommendations are not legally enforceable but some of the Building Regulations refer directly to specific British Standards and accept them as deemed to satisfy provisions. All materials and components complying with a particular British Standard are marked with the British Standards kitemark thus: together with the appropriate BS number.

This symbol assures the user that the product so marked has been produced and tested in accordance with the recommendations set out in that specific standard. Full details of BS products and services can be obtained from Customer Services, BSI, 389 Chiswick High Road, London W4 4AL. Standards applicable to building may be purchased individually or in modules for General Construction, Materials, Health and Safety, Project and Design, Interior and Utility and Eurocodes. British Standards are constantly under review and are amended, revised and rewritten as necessary; therefore a check should always be made to ensure that any standard being used is the current issue. There are over 1500 British Standards which are directly related to the construction industry and these are prepared in five formats:

1. British Standards - these give recommendations for the minimum standard of quality and testing for materials and components. Each standard number is prefixed BS.

2. Codes of Practice - these give recommendations for good practice relative to design, manufacture, construction, installation and maintenance with the main objectives of safety, quality, economy and fitness for the intended purpose. Each code of practice number is prefixed CP or BS.

3. Draft for Development - these are issued instead of a British Standard or Code of Practice when there is insufficient data or information to make firm or positive recommendations. Each draft number is prefixed DD. Sometimes given a BS number and suffixed DC, i.e. Draft for public Comment.

4. Published Document - these are publications which cannot be placed into any one of the above categories. Each published document is numbered and prefixed PD.

5. Publicly Available Specification - client sponsored standards produced to BSI guidelines. Reviewed after two years to determine whether they should become established as a BS. Prefixed PAS.
European Standards - since joining the European Union (EU), trade and tariff barriers have been lifted. This has opened up the market for manufacturers of construction-related products, from all EU and European Economic Area (EEA) member states. Before 2004, the EU was composed of 15 countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden and the United Kingdom. It now includes Bulgaria, Cyprus, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Romania, Slovakia, Slovenia, Iceland, Liechtenstein and Norway. Nevertheless, the wider market is not so easily satisfied, as regional variations exist. This can create difficulties where product dimensions and performance standards differ. For example, thermal insulation standards for masonry walls in Mediterranean regions need not be the same as those in the UK. Also, preferred dimensions differ across Europe in items such as bricks, timber, tiles and pipes.

European Standards are prepared under the auspices of Comité Européen de Normalisation (CEN), of which the BSI is a member. European Standards that the BSI have not recognised or adopted are prefixed EN. These are EuroNorms and will need revision for national acceptance.

For the time being, British Standards will continue and, where similarity with other countries’ standards and ENs can be identified, they will run side by side until harmonisation is complete and approved by CEN.

e.g. BS EN 295 complements the previous national standard:
 BS 65 – Vitrefied clay pipes . . . for drains and sewers.

European Pre-standards are similar to BS Drafts for Development. These are known as ENVs.

Some products which satisfy the European requirements for safety, durability and energy efficiency carry the CE mark. This is not to be assumed as a mark of performance and is not intended to show equivalence to the BS kitemark. However, the BSI is recognised as a Notified Body by the EU and as such is authorised to provide testing and certification in support of the CE mark.

International Standards - these are prepared by the International Organisation for Standardisation and are prefixed ISO. Many are compatible with, complement and have superseded BSs, e.g. ISO 9001 Quality Management Systems and BS 5750: Quality Systems.
For manufacturers' products to be compatible and uniformly acceptable in the European market, there exists a process for harmonising technical specifications. These specifications are known as harmonised European product standards (hENs), produced and administered by the Comité Européen de Normalisation (CEN). European Technical Approvals (ETAs) are also acceptable where issued by the European Organisation for Technical Approvals (EOTA).

CPR harmonises the following compliance requirements:
- Energy economy and heat retention.
- Hygiene, health and environment.
- Mechanical resistance and stability.
- Protection against noise.
- Safety and accessibility in use.
- Safety in case of fire.
- Sustainable use of natural resources.

Member states of the European Economic Area (EEA) are legally required to ensure their construction products satisfy the above basic criteria.

UK attestation accredited bodies include: BBA, BRE and BSI.

CE mark – a marking or labelling for conforming products. A 'passport' permitting a product to be legally marketed in any EEA. It is not a quality mark, e.g. BS kitemark, but where appropriate this may appear with the CE marking.

CE marking – reproduced with kind permission of Rockwool Ltd.
Building Research Establishment ~ The BRE was founded as a UK Government agency in 1921. It was known initially as the Building Research Department and thereafter until the early 1970s as the Building Research Station.

In addition to UK Government funding, some financial support is now provided by the European Union. Additional funding is derived from a variety of sources, including commercial services for private industry and from publications. The latter includes the BRE’s well-known regular issue of research information products, i.e. Digests, Information Papers, Good Building Guides and Good Repair Guides.

UK Government support is principally through the Department for Business Enterprise and Regulatory Reform (BERR) and the Department for Communities and Local Government (DCLG). The DCLG works with the BRE in formulating specific aspects of the Approved Documents to the Building Regulations. Commissioned research is funded by the BRE Trust.

The BRE incorporates and works with other specialised research and material testing organisations, e.g. see LPCB, below. It is accredited under the United Kingdom Accreditation Service (UKAS) as a testing laboratory authorised to issue approvals and certifications such as CE product marking (see pages 75 and 76). Certification of products, materials and applications is effected through BRE Certification Ltd.

Loss Prevention Certification Board (LPCB) ~ The origins of this organisation date back to the latter part of the 19th century, when it was established by a group of building insurers as the Fire Offices’ Committee (FOC).

Through a subdivision known as the Loss Prevention Council (LPC), the FOC produced a number of technical papers and specifications relating to standards of building construction and fire control installations. These became the industry standards that were, and continue to be, frequently used by building insurers as supplementary to local bye-laws and latterly the Building Regulation Approved Documents.

In the late 1980s the LPC was renamed the LPCB as a result of reorganisation within the insurance profession. At this time the former LPC guidance documents became established in the current format of Loss Prevention Standards.

In 2000 the LPCB became part of the BRE and now publishes its Standards under BRE Certification Ltd.
British Board of Agrément (BBA) ~ an approvals authority established in 1966, known then as the Agrément Board. It was based on the French Government’s system of product approval. In 1982 it was renamed. Accredited by UKAS and a UK representative in EOTA.

The BBA’s UK premises are at the BRE in Garston, near Watford, a convenient location for access to the BRE’s research and testing facilities. It is an independent organisation with the purpose of impartially assessing materials, systems, practices, new market products and existing products being used in a new or innovative way. The objective is to evaluate these where an existing British Standard, Eurostandard or similar quality benchmark does not exist. Agrément certification is a quality assurance standard for products and innovations not covered by a CE mark and/or a BS kitemark. Once established, an agrément certificate may be used to attain CE marking or for development into a new BS.

Agrément certificates are only issued after rigorous testing and critical analysis criteria are satisfied, relative to intended application and fitness for purpose. Where new materials, products, components, installation processes and installations are proposed, an agrément certificate may be regarded as sufficiently authoritative for proof of Building Regulations compliance.

The Construction Industry Research and Information Association (CIRIA) ~ established in 1960 as the Civil Engineering Research Council (CERC) with the objective of financing research with money raised from industry. In 1967 it was renamed, thereafter as a non-profit making company owned by other companies, universities, government departments and various other public sector organisations. All subscriptions and fee income is invested into seminars, training and research.

Main areas of activity:

- Research ~ industry wide covering construction and the environment.
- Publications ~ a catalogue of over 600 titles.
- Training ~ short courses, seminars and conferences.
- Networks ~ support processes at training events, seminars and workshops.
- Information services ~ newsletters, bulletins and a biannual magazine.
CI/SfB System ~ a coded filing system for the classification and storing of building information and data. It was created in Sweden under the title of Samarbetskommittén för Byggnadsfrågor and was introduced into this country in 1961 by the RIBA. In 1968 the CI (Construction Index) was added to the system which is used nationally and recognised throughout the construction industry. The system consists of five sections called tables which are subdivided by a series of letters or numbers and these are listed in the CI/SfB index book to which reference should always be made in the first instance to enable an item to be correctly filed or retrieved.

Table 0 – Physical Environment
This table contains ten sections 0 to 9 and deals mainly with the end product (i.e. the type of building.) Each section can be further subdivided (e.g. 21, 22, etc.) as required.

Table 1 – Elements
This table contains ten sections numbered (0–) to (9–) and covers all parts of the structure such as walls, floors and services. Each section can be further subdivided (e.g. 31, 32, etc.) as required.

Table 2 – Construction Form
This table contains 25 sections lettered A to Z (O being omitted) and covers construction forms such as excavation work, blockwork, cast in-situ work etc., and is not subdivided but used in conjunction with Table 3.

Table 3 – Materials
This table contains 25 sections lettered a to z (l being omitted) and covers the actual materials used in the construction form such as metal, timber, glass, etc., and can be subdivided (e.g. n1, n2, etc.) as required.

Table 4 – Activities and Requirements
This table contains 25 sections lettered (A) to (Z), (O being omitted) and covers anything which results from the building process such as shape, heat, sound, etc. Each section can be further subdivided ((M1), (M2) etc.) as required.
CPI System of Coding ~ the Coordinated Project Information initiative originated in the 1970s in response to the need to establish a common arrangement of document and language communication, across the varied trades and professions of the construction industry. From this evolved the Common Arrangement of Work Sections (CAWS) first published in 1987. Since then it has been effectively used with the publication of the Standard Method of Measurement 7th edition (SMM 7), the National Building Specification (NBS) and the Drawings Code. (Note: The NBS is also produced in CI/SfB format.) Later editions of CAWS are aligned with Uniclass.

The arrangement in all documents is a coordination of alphabetic sections, corresponding to elements of work, the purpose being to avoid mistakes, omissions and other errors which have in the past occurred between drawings, specification and bill of quantities descriptions.

The coding is a combination of letters and numbers, spanning three levels:

Level 1 has 24 headings from A to Z (omitting I and O). Each heading relates to part of the construction process, such as groundwork (D), Joinery (L), surface finishes (M), etc.

Level 2 is a subheading, which in turn is subgrouped numerically into different categories. So, for example, Surface Finishes is subheaded: Plaster, Screeds, Painting, etc. These subheadings are then extended further, thus Plaster becomes: Plastered/Rendered Coatings, Insulated Finishes, Sprayed Coatings, etc.

Level 3 is the work section subgrouped from level 2, to include a summary of inclusions and omissions.

As an example, an item of work coded M21 signifies:

M - Surface finishes
2 - Plastered coatings
1 - Insulation with rendered finish

The coding may be used to:
(a) simplify specification writing
(b) reduce annotation on drawings
(c) rationalise traditional taking-off methods
Uniclass ~ the Unified Classification for the Construction Industry was created in the 1990s by the Construction Project Information Committee (CPIC) [see below] and first published by the RIBA in 1997.

Purpose ~ to organise product literature and project information into a structured library format. It incorporates the Common Arrangement of Work Sections (CAWS) and the Electronic Product Information Cooperation (EPIC) system of structuring product literature and information.

Composition ~ comprises 15 tables (coded A to Q, I and O omitted), each table an independent classification of specific information that can be used solely or in combination with other table references where subject matter is complex or diverse.

EPIC ~ an established European coding system for technical product literature and information. Widely used across continental Europe but less so in the UK. Favoured by some product manufacturers in their presentation of data to architects and engineers.

Product literature label showing CI/SfB, Uniclass and EPIC notation ~

<table>
<thead>
<tr>
<th>Uniclass</th>
<th>EPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>L5214</td>
<td>E312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl/SfB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne5</td>
</tr>
</tbody>
</table>

(47)

CPIC members ~
Construction Confederation (CC).
Royal Institute of British Architects (RIBA).
Chartered Institute of Architectural Technologists (CIAT).
Chartered Institution of Building Services Engineers (CIBSE).
Royal Institution of Chartered Surveyors (RICS).
Institution of Civil Engineers (ICE).
BIM ~ terminology specific to the construction industry as a summary description for collating, organising and managing technical information and project data.

Development and Background ~ information modelling is not new in concept. The practice of creating and maintaining libraries of readily accessible, searchable and transferable building information has produced several orderly and systematic arrangements. Not least the established coding systems outlined on the preceding three pages; namely, CI/SfB, CPI (incorporating CAWS, NBS and SMM7) and Uniclass. As independent systems these have their limitations. Certain parts are becoming oversubscribed as new technologies and processes evolve. The CI/SfB alpha-numeric mix of letters, numbers and brackets is not entirely compatible with digital formatting. Used in combination, there is cross correlation and common identification of some coded classifications, but there remains an element of variation and disparity. Unification of data formatting and presentation is an objective that BIM seeks to address to simplify information transfer between projects and more widely across the industry.

Structured data can be presented within three categories:

- Building Information Modelling ~ as outlined above, a business information process providing access for all involved with a construction project from client through design, assembly and after care.

- Building Information Model ~ digital representation of the business process that provides structured data management to include schedules and reports in spreadsheet format for the various stages of a project's development.

- Building Information Management ~ the organisation and administrative strategy for control of a project using data from the building information model. A communication process that applies from initial concept and inception of a building, throughout the construction process and with regard to the long term maintenance and intended life span of a completed asset.
Project information and data classification systems:

BPIC ~ Building Project Information Committee, formed in 1987. Produced the Common Arrangement of Work Sections (CAWS) as a simplified specification and referencing system. Renamed CPIC, Construction Project Information Committee in the mid 90s. In 1997 introduced Uniclass as a structured product literature and information classification.

CAWS ~ a letter and number (alpha-numeric) coded notation of work sections, groups and sub-groups produced primarily to coordinate entries in specifications and bills of quantities. Compatible with SMM7, NBS and NES. See page 79.

CI/SfB ~ introduced to the UK in 1961 with revisions in 1968 and 1976. The forerunner to subsequent indexing systems, it has gained wide acceptance across the construction industry. Now functions mainly as library referencing of product literature. Its bracketed combinations of letters and numbers limit its application to digital technology. See page 78.

COBie ~ Construction Operations Building information exchange. A shared data standard management system applied to the intended life span of a building. It provides a spreadsheet source of data based on reports and models relating to existing completed projects. From this data storage facility, structured information can be transferred and used for planning and managing subsequent similar building types.

EPIC ~ Electronic Product Information Cooperation. Popular across continental Europe as a coding system for manufacturers’ product literature. Used by some UK architectural and engineering practices as a basis for data presentation. See page 80.

continued
NBS ~ National Building Specification, the UK national standard specification for building work. Part of RIBA Enterprises Ltd. NBS also have other information resource products including the Construction Information Service (CIS) produced jointly with IHS, Information Handling Services.

NBS Create ~ a data standard for documenting and sharing structured information based on existing work schedules and manufacturers’ product details. Links NBS to building information modelling.

NBS National BIM Library ~ an information resource covering all aspects of the building fabric and elements of construction. The content of the library is based on “.... proprietary and pre-configured generic objects”.

NES ~ National Engineering Specification for building services projects. Standard, concise specifications endorsed by CIBSE, Chartered Institution of Building Services Engineers and BSRIA, Building Services Research and Information Association.

RIBA Plan of Work ~ established in 1964 by the Royal Institute of British Architects as a methodical procedure for the design team to apply to building projects. Its ‘work stages’ and ‘key tasks’ have become universally accepted by the other building professions as a planning model, as guidance for progressing projects and for processing contract procurement. Subsequent revisions, notably in 1998, 2007 and 2011 have retained its relevance.

SMM ~ Standard Method of Measurement, originated in 1922 with several revisions since then. It is used mainly by quantity surveyors as a model for producing bills of quantities for builders’ estimators to price when tendering for work. The SMM’s rules for measurement are used throughout the world. In current format it is written to comply with CPI guidance (see page 79). Maintained by the RICS, Royal Institution of Chartered Surveyors.

Uniclass ~ first produced in 1997 and subsequently revised, provides a tabulated system of classifications that represent project information and product literature. Incorporates CAWS and EPIC. See page 80.
This page intentionally left blank
2 SITE WORKS

SITE MEASUREMENT
SITE INVESTIGATIONS
SOIL INVESTIGATION
SOIL ASSESSMENT AND TESTING
SITE LAYOUT CONSIDERATIONS
SITE SECURITY
SITE LIGHTING AND ELECTRICAL SUPPLY
SITE OFFICE ACCOMMODATION
SITE HEALTH AND WELFARE PROVISION
MATERIALS STORAGE
MATERIALS TESTING
TIMBER DECAY AND TREATMENT
PROTECTION ORDERS FOR TREES AND SHRUBS
LOCATING PUBLIC UTILITY SERVICES
SETTING OUT
LEVELS AND ANGLES
ROAD CONSTRUCTION
TUBULAR SCAFFOLDING AND SCAFFOLDING SYSTEMS
SHORING SYSTEMS
DEMOLITION
Site Analysis – prior to purchasing a building site it is essential to conduct a thorough survey to ascertain whether the site characteristics suit the development concept. The following guidance forms a basic checklist:

* Refer to Ordnance Survey maps to determine adjacent features, location, roads, facilities, footpaths and rights of way.
* Conduct a measurement survey to establish site dimensions and levels.
* Observe surface characteristics, i.e. trees, steep slopes, existing buildings, rock outcrops, wells.
* Inquire of local authority whether preservation orders affect the site and if it forms part of a conservation area.
* Investigate subsoil. Use trial holes and borings to determine soil quality and water table level.
* Consider flood potential, possibilities for drainage of water table, capping of springs, filling of ponds, diversion of streams and rivers.
* Consult local utilities providers for underground and overhead services, proximity to site and whether they cross the site.
* Note suspicious factors such as filled ground, cracks in the ground, subsidence due to mining and any cracks in existing buildings.
* Regard neighbourhood scale and character of buildings with respect to proposed new development.
* Decide on best location for building (if space permits) with regard to ‘cut and fill’, land slope, exposure to sun and prevailing conditions, practical use and access.

See also desk and field studies on page 91.
Irregular plan surface areas ~ these are typical of many building sites, with odd-shaped boundaries and directional changes.

Methods for measurement ~ modern instruments and computational techniques, including photogrammetry, can provide accurate calculation of site areas. Traverse data coordinates from theodolite readings can also be used. Fieldwork measurements and simple calculations are an adequate and economic means for obtaining reasonable area estimates for most modest size sites. These can be undertaken from scaled maps or preferably from a scaled drawing of the area following a measured survey.

Estimates based on scaled site drawings ~

• Gridded tracing paper superimposed over the plotted area and the number of squares counted.

E.g. If each square scaled is 10m x 10m (100m²), the approximate site area is:
8 full squares at 100m² = 800m²
3.5 squares made up of proportional squares = 350m²
Total area is approximately 800m² + 350m² = 1150m²

• Give and take for irregular boundaries.
Thomas Simpson (1710–1761) is a British mathematician who derived interpolation and numerical methods of integration for calculation of areas under curves.

Simpson’s rule is:

\[A = w \left[(h_1 + h_7) + 4(h_2 + h_4 + h_6) + 2(h_3 + h_5) \right] \div 3 \]

Where:
- \(A \) = estimate of site area (m²)
- \(w \) = width or equal distances between ordinates (m)
- \(h \) = height or length of parallel ordinates (m)

Note: requires an odd number of ordinates and an even number of areas.

E.g.

If, \(h_1 = 40 \text{ m}, h_2 = 36 \text{ m}, h_3 = 34 \text{ m}, h_4 = 34 \text{ m}, h_5 = 38 \text{ m}, h_6 = 36 \text{ m}, \) and \(h_7 = 20 \text{ m} \), \(w = 12 \text{ m} \).

\[A = 12 \left[(40 + 20) + 4(36 + 36 + 36) + 2(34 + 38) \right] \div 3 \]
\[A = 12 \left[60 + 432 + 144 \right] \div 3 \]
\[A = 12 \times 636 \div 3 \]
\[A = 2544 \text{ m}^2 \]

Note: An area 100 m × 100 m (10,000 m²) = 1 hectare (1ha).

In the above calculation, 2544 m² = 0.2544 ha.

In imperial measurement there are approximately 2.5 (2.471) acres to 1ha. Therefore 0.2544 ha = 0.6286 acres.
Method ~ a little less accurate than Simpson’s rule as it does not assume a curved boundary, but it is adequate in most situations for providing a reasonable estimate of site area. As with Simpson’s rule, the site plan area is divided into several parallel strips of equal width (w).

E.g.

Area of trapezoid ABHJ = \((h_1 + h_2) \div 2\) \(\times w\)
Area of trapezoid BCJK = \((h_2 + h_3) \div 2\) \(\times w\)
and so on until:
Area of trapezoid FGNP = \((h_6 + h_7) \div 2\) \(\times w\)

Therefore the total plot area (A) will be the sum of the trapezoids expressed as:

\[A = w \{((h_1 + h_7) \div 2) + h_2 + h_3 + h_4 + h_5 + h_6\} \]

E.g. Using the site dimensions from the previous page:

\[A = 12 \{((40 + 20) \div 2) + 36 + 34 + 36 + 38 + 36\} \]
\[A = 12 \{30 + 36 + 34 + 36 + 38 + 36\} \]
\[A = 12 \times 210 \]
\[A = 2520 m^2 \]

A fair comparison with the same area calculation of 2544 m² using Simpson’s rule on the previous page. Greater accuracy can be achieved by reducing the ordinate widths (w).
Site Investigation For New Works ~ the basic objective of this form of site investigation is to collect systematically and record all the necessary data which will be needed or will help in the design and construction processes of the proposed work. The collected data should be presented in the form of fully annotated and dimensioned plans and sections. Anything on adjacent sites which may affect the proposed works or conversely anything appertaining to the proposed works which may affect an adjacent site should also be recorded.
Procedures ~

1. Desk study
2. Field study or walk-over survey
3. Laboratory analysis (see pages 100-101 and 106-111)

Desk Study ~ collection of known data, to include:

- Ordnance Survey maps - historical and modern, note grid reference.
- Geological maps - subsoil types, radon risk.
- Site history - green-field/brown-field.
- Previous planning applications/approvals.
- Current planning applications in the area.
- Development restrictions - conservation orders.
- Utilities - location of services on and near the site.
- Aerial photographs.
- Ecology factors - protected wildlife.
- Local knowledge - anecdotal information/rights of way.
- Proximity of local land-fill sites - methane risk.

Field Study ~ intrusive visual and physical activity to:

- Establish site characteristics from the desk study.
- Assess potential hazards to health and safety.
- Appraise surface conditions:
 * Trees - preservation orders.
 * Topography and geomorphological mapping.
- Appraise ground conditions:
 * Water table.
 * Flood potential - local water courses and springs.
 * Soil types.
 * Contamination - vegetation die-back.
 * Engineering risks - ground subsidence, mining, old fuel tanks.
 * Financial risks - potential for the unforeseen.
- Take subsoil samples and conduct in-situ tests.
- Consider the need for subsoil exploration, trial pits and boreholes.
- Appraise existing structures:
 * Potential for reuse/refurbishment.
 * Archaeological value/preservation orders.
 * Demolition - costs, health issues (e.g. asbestos).
Purpose ~ primarily to obtain subsoil samples for identification, classification and ascertaining the subsoil’s characteristics and properties. Trial pits and augered holes may also be used to establish the presence of any geological faults and the upper or lower limits of the water table.

General use ~
dry ground which requires little or no temporary support to sides of excavation.
Subsidiary use~
to expose and/or locate underground services.
Advantages ~
subsoil can be visually examined in-situ – both disturbed and undisturbed samples can be obtained.

General use ~
dry ground but liner tubes could be used if required to extract subsoil samples at a depth beyond the economic limit of trial holes.
Advantages ~
generally a cheaper and simpler method of obtaining subsoil samples than the trial pit method.

Trial pits and holes should be sited so that the subsoil samples will be representative but not interfering with works.
Site Investigation ~ this is an all-embracing term covering every aspect of the site under investigation.

Soil Investigation ~ specifically related to the subsoil beneath the site under investigation and could be part of or separate from the site investigation.

Purpose of Soil Investigation ~

1. Determine the suitability of the site for the proposed project.
2. Determine an adequate and economic foundation design.
3. Determine the difficulties which may arise during the construction process and period.
4. Determine the occurrence and/or cause of all changes in subsoil conditions.

The above purposes can usually be assessed by establishing the physical, chemical and general characteristics of the subsoil by obtaining subsoil samples which should be taken from positions on the site which are truly representative of the area but are not taken from the actual position of the proposed foundations. A series of samples extracted at the intersection points of a 20,000 square grid pattern should be adequate for most cases.

Soil Samples ~ these can be obtained as disturbed or as undisturbed samples.

Disturbed Soil Samples ~ these are soil samples obtained from boreholes and trial pits. The method of extraction disturbs the natural structure of the subsoil but such samples are suitable for visual grading, establishing the moisture content and some laboratory tests. Disturbed soil samples should be stored in labelled airtight jars.

Undisturbed Soil Samples ~ these are soil samples obtained using coring tools which preserve the natural structure and properties of the subsoil. The extracted undisturbed soil samples are labelled and laid in wooden boxes for dispatch to a laboratory for testing. This method of obtaining soil samples is suitable for rock and clay subsoils but difficulties can be experienced in trying to obtain undisturbed soil samples in other types of subsoil.

The test results of soil samples are usually shown on a drawing which gives the location of each sample and the test results in the form of a hatched legend or section.

Ref. BS EN 1997-2: Geotechnical design. Ground investigation and testing.
Depth of Soil Investigation ~ before determining the actual method of obtaining the required subsoil samples the depth to which the soil investigation should be carried out must be established. This is usually based on the following factors:

1. Proposed foundation type.
2. Pressure bulb of proposed foundation.
3. Relationship of proposed foundation to other foundations.

Typical Examples ~

Pressure bulbs of less than 20% of original loading at foundation level can be ignored - this applies to all foundation types.

NB. For further examples see next page.
Typical Examples of Depth of Soil Investigation Considerations

- **Angle of maximum shear**

- **Pad foundations exerting a pressure of \(p = \text{kgf/m}^2 \)**

- **Overlap area double stressed which may necessitate soil investigation to a greater depth than \(1.5b \)**

Foundations close to one another

- **Pad foundation exerting a pressure of \(p = \text{kgf/m}^2 \)**

- **Raft foundation exerting a pressure of \(p = \text{kgf/m}^2 \)**

- **Pressure bulb within safe ground-loading conditions**

- **Pressure bulb passing through low load-bearing strata**

Different foundation types on the same site

Good load-bearing strata

Low load-bearing strata
Soil Investigation Methods ~ method chosen will depend on several factors:

1. Size of contract.
2. Type of proposed foundation.
3. Type of sample required.
4. Types of subsoils which may be encountered.

As a general guide the most suitable methods in terms of investigation depth are:

1. Foundations up to 3 000 deep – trial pits.
2. Foundations up to 30 000 deep – borings.
3. Foundations over 30 000 deep – deep borings and in-situ examinations from tunnels and/or deep pits.

Typical Trial Pit Details ~

NB. For details of other soil investigation methods see the next two pages.
Boring Methods to Obtain Disturbed Soil Samples:

1. Hand or Mechanical Auger — suitable for depths up to 3,000 using a 150 or 200mm diameter flight auger.

2. Mechanical Auger — suitable for depths over 3,000 using a flight or Cheshire auger — a liner or casing is required for most granular soils and may be required for other types of subsoil.

3. Sampling Shells — suitable for shallow to medium depth borings in all subsoils except rock.

Typical Details —

NB. For further examples see next page.
Wash Boring ~ this is a method of removing loosened soil from a borehole using a strong jet of water or bentonite which is a controlled mixture of fuller's earth and water. The jetting tube is worked up and down inside the borehole, the jetting liquid disintegrates the subsoil which is carried in suspension up the annular space to a settling tank. The settled subsoil particles can be dried for testing and classification. This method has the advantage of producing subsoil samples which have not been disturbed by the impact of sampling shells; however, it is not suitable for large gravel subsoils or subsoils which contain boulders.

Typical Wash Boring Arrangement ~

Mud-rotary Drilling ~ this is a method which can be used for rock investigations where bentonite is pumped in a continuous flow down hollow drilling rods to a rotating bit. The cutting bit is kept in contact with the bore face and the debris is carried up the annular space by the circulating fluid. Core samples can be obtained using coring tools.

Core Drilling ~ water or compressed air is jetted down the borehole through a hollow tube and returns via the annular space. Coring tools extract continuous cores of rock samples which are sent in wooden boxes for laboratory testing.
Borehole Data ~ the information obtained from trial pits or boreholes can be recorded on a pro forma sheet or on a drawing showing the position and data from each trial pit or borehole thus:

Boreholes can be taken on a 15:000 to 20:000 grid covering the whole site or in isolated positions relevant to the proposed foundation(s).

As a general guide the cost of site and soil investigations should not exceed 1% of estimated project costs.
Soil Assessment ~ prior to designing the foundations for a building or structure the properties of the subsoil(s) must be assessed. These processes can also be carried out to confirm the suitability of the proposed foundations. Soil assessment can include classification, grading, tests to establish shear strength and consolidation. The full range of methods for testing soils is given in BS 1377: Methods of test for soils for civil engineering purposes.

Classification ~ soils may be classified in many ways such as geological origin, physical properties, chemical composition and particle size. It has been found that the particle size and physical properties of a soil are closely linked and are therefore of particular importance and interest to a designer.

Particle Size Distribution ~ this is the percentages of the various particle sizes present in a soil sample as determined by sieving or sedimentation. BS 1377 divides particle sizes into groups as follows:

- **Gravel particles** ~ over 2mm
- **Sand particles** ~ between 2mm and 0.06mm
- **Silt particles** ~ between 0.06mm and 0.002mm
- **Clay particles** ~ less than 0.002mm

The sand and silt classifications can be further divided thus:

<table>
<thead>
<tr>
<th>CLAY</th>
<th>SILT</th>
<th>SAND</th>
<th>GRAVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fine</td>
<td>medium</td>
<td>coarse</td>
</tr>
<tr>
<td>0.002</td>
<td>0.006</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>2</td>
</tr>
</tbody>
</table>

The results of a sieve analysis can be plotted as a grading curve thus:
Triangular Chart ~ this provides a general classification of soils composed predominantly from clay, sand and silt. Each side of the triangle represents a percentage of material component. Following laboratory analysis, a sample’s properties can be graphically plotted on the chart and classed accordingly.

E.g. Sand – 70%, Clay – 10% and Silt – 20% = Sandy Loam.

Note:
Silt is very fine particles of sand, easily suspended in water.
Loam is very fine particles of clay, easily dissolved in water.
Plate Loading Test — otherwise known as the plate bearing test. By comparison with the more scientific testing procedures described on the next few pages, this test is rudimentary in simplicity. However, it is a cost effective application as a preliminary means for assessing the bearing capacity of unknown soil conditions.

Procedure — a trial hole is excavated to the anticipated depth of foundation bearing. Within the excavation is placed a steel test plate of proportionally smaller area than the finished foundation. This plate is then loaded with a proportionally smaller loading than the building load and settlement monitored to establish a building load/soil settlement relationship.

Traditionally, heavy weights of steel billets, concrete blocks, bricks or sandbags were mounted over the test plate gradually increasing the load as the relative settlement was recorded. This somewhat precarious material intensive procedure is superseded by using a hydraulic jack between test plate and a kentledge forming a platform for dense objects such as concrete blocks as shown below.

Typical test results shown on the next page.
Plate Loading Test Results ~

![Diagram of load vs settlement over time]

Limitations ~ although useful for determining subsoil properties at shallow depths, this test is limited to a relatively small area of test plate. As shown on pages 94 and 95, the extent of pressure bulb under the test load will be less than the pressure bulb beneath the actual foundation. Therefore this test does not account for the underlying soil conditions beyond the pressure bulb sphere of the test plate.

Plate Loading Test Numerical Example ~

A steel column pad foundation with anticipated design dimensions of one square metre supporting a load of 30 tonnes. Using a proportionally reduced test plate of 25% foundation area (500 mm × 500 mm) this will be required to carry $30 \div 4$ tonnes, i.e. 7.5 tonnes. The usual safety margin with these tests is a factor of 3, therefore $7.5 \text{ tonnes} \times 3$ will be 22.5 tonnes or 225 kN ultimate loading to be applied.
Site Soil Tests ~ these tests are designed to evaluate the density or shear strength of soils and are very valuable since they do not disturb the soil under test. Three such tests are the standard penetration test, the vane test and the unconfined compression test, all of which are fully described in BS 1377: Methods of test for soils for civil engineering purposes.

Standard Penetration Test ~ this test measures the resistance of a soil to the penetration of a split spoon or split barrel sampler driven into the bottom of a borehole. The sampler is driven into the soil to a depth of 150 mm by a falling standard weight of 65 kg falling through a distance of 760 mm. The sampler is then driven into the soil a further 300 mm and the number of blows counted up to a maximum of 50 blows. This test establishes the relative density of the soil.

TYPICAL RESULTS
Non-cohesive soils:

<table>
<thead>
<tr>
<th>No. of Blows</th>
<th>Relative Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 4</td>
<td>very loose</td>
</tr>
<tr>
<td>4 to 10</td>
<td>loose</td>
</tr>
<tr>
<td>10 to 30</td>
<td>medium</td>
</tr>
<tr>
<td>30 to 50</td>
<td>dense</td>
</tr>
<tr>
<td>50+</td>
<td>very dense</td>
</tr>
</tbody>
</table>

Cohesive soils:

<table>
<thead>
<tr>
<th>No. of Blows</th>
<th>Relative Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2</td>
<td>very soft</td>
</tr>
<tr>
<td>2 to 4</td>
<td>soft</td>
</tr>
<tr>
<td>4 to 8</td>
<td>medium</td>
</tr>
<tr>
<td>8 to 15</td>
<td>stiff</td>
</tr>
<tr>
<td>15 to 30</td>
<td>very stiff</td>
</tr>
<tr>
<td>30+</td>
<td>hard</td>
</tr>
</tbody>
</table>

The results of this test in terms of number of blows and amounts of penetration will need expert interpretation.
Vane Test — this test measures the shear strength of soft cohesive soils. The steel vane is pushed into the soft clay soil and rotated by hand at a constant rate. The amount of torque necessary for rotation is measured and the soil shear strength calculated as shown below.

This test can be carried out within a lined borehole where the vane is pushed into the soil below the base of the borehole for a distance equal to three times the vane diameter before rotation commences. Alternatively the vane can be driven or jacked to the required depth, the vane being protected within a special protection shoe. The vane is then driven or jacked a further 500mm before rotation commences.

Calculation of Shear Strength —

Formula: \[S = \frac{M}{K} \]

where \(S \) = shear value in kN/m²

\(M \) = torque required to shear soil

\(K \) = constant for vane

\[K = 3.66 \times 10^{-6} \]

\(D \) = vane diameter
Unconfined Compression Test ~ this test can be used to establish the shear strength of a non-fissured cohesive soil sample using portable apparatus either on site or in a laboratory. The 75mm long × 38mm diameter soil sample is placed in the apparatus and loaded in compression until failure occurs by shearing or lateral bulging. For accurate reading of the trace on the recording chart a transparent viewfoil is placed over the trace on the chart.

Typical Apparatus Details~

Typical Results ~ showing compression strengths of clays:

- Very soft clay: less than 25kN/m²
- Soft clay: 25 to 50kN/m²
- Medium clay: 50 to 100kN/m²
- Stiff clay: 100 to 200kN/m²
- Very stiff clay: 200 to 400kN/m²
- Hard clay: more than 400kN/m²

NB. The shear strength of clay soils is only half of the compression strength values given above.
Laboratory Testing ~ tests for identifying and classifying soils with regard to moisture content, liquid limit, plastic limit, particle size distribution and bulk density are given in BS 1377.

Bulk Density ~ this is the mass per unit volume which includes mass of air or water in the voids and is essential information required for the design of retaining structures where the weight of the retained earth is an important factor.

Shear Strength ~ this soil property can be used to establish its bearing capacity and also the pressure being exerted on the supports in an excavation. The most popular method to establish the shear strength of cohesive soils is the Triaxial Compression Test. In principle this test consists of subjecting a cylindrical sample of undisturbed soil (75mm long x 38mm diameter) to a lateral hydraulic pressure in addition to a vertical load. Three tests are carried out on three samples (all cut from the same large sample), each being subjected to a higher hydraulic pressure before axial loading is applied. The results are plotted in the form of Mohr’s circles.
Shear Strength - this can be defined as the resistance offered by a soil to the sliding of one particle over another. A simple method of establishing this property is the Shear Box Test in which the apparatus consists of two bottomless boxes which are filled with the soil sample to be tested. A horizontal shearing force (S) is applied against a vertical load (W), causing the soil sample to shear along a line between the two boxes.

Consolidation of Soil - this property is very important in calculating the movement of a soil under a foundation. The laboratory testing apparatus is called an Oedometer.
Shrinkable Soils ~ soils subject to volume changes due to variation in moisture content. Pages 245 to 248 show the causes and effects of soil swelling and shrinkage.

Shrinkable Soil Classification ~
- > 35% fine particles.
- Plasticity index (PI) ≥ 10%.

Fine Particles ~ minute portions of clay (loam) or silt having a nominal diameter of < 60 μm (0.06mm).

Plasticity Index (PI) ~ a numerical measure of the potential for a soil to change in volume. Can be determined by the Atterberg* limits test on fine particles < 425 μm (0.425mm). Particles greater than this are removed by sieving.

Plastic limit (PL) = Liquid limit (LL) - Plastic limit (PL)

Soils with a high PI tend to be mainly composed of clay, those with a low PI, of silt.

<table>
<thead>
<tr>
<th>Plasticity index (PI)</th>
<th>Characteristic plastic quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>1 - 5</td>
<td>Slight</td>
</tr>
<tr>
<td>5 - 10</td>
<td>Low</td>
</tr>
<tr>
<td>10 - 20</td>
<td>Medium</td>
</tr>
<tr>
<td>20 - 40</td>
<td>High</td>
</tr>
<tr>
<td>> 40</td>
<td>Very high</td>
</tr>
</tbody>
</table>

*Albert Atterberg (1846 - 1916) Swedish chemist.
Modified Plasticity Index (MPI) ~ a variation of the plasticity index as shown by formula:

\[\text{MPI} = \frac{\text{PI} \times \% \, \text{of soil particles} < 425 \, \mu \text{m}}{100} \]

<table>
<thead>
<tr>
<th>MPI (%)</th>
<th>Soil volume change potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 40</td>
<td>High</td>
</tr>
<tr>
<td>20 – 40</td>
<td>Medium</td>
</tr>
<tr>
<td>10 – 20</td>
<td>Low</td>
</tr>
</tbody>
</table>

Atterberg Limits Test ~ (liquid limit and plastic limit) for fine grained soil. As shown on the previous page, determines the state of a soil in terms of non-plastic, plastic and viscous fluid.

Plastic Limit ~ a simple test established by hand rolling a sample of soil on a flat non-porous surface. Soil is defined as plastic when the sample retains its shape down to a very small diameter. The plastic limit occurs when the slender thread of soil breaks apart at a diameter of about 3mm. Considered non-plastic if the thread of soil cannot be rolled down to 3mm at any moisture content. A measure of the relatively low water content at which a soil changes from a plastic state to a solid state.

Liquid Limit ~ water or moisture content when a soil sample changes from plastic to liquid behavioural characteristics. Can also be regarded as the relatively high water content at which soil changes from a liquid to a plastic state.

Atterberg’s Original Test Procedure ~ pat of clay soil placed in a porcelain bowl and a groove cut through the middle of the sample. By hand striking the bowl several times the relative characteristics of different clay soils could be measured by the number of blows required to close the groove. This arbitrary test process was later standardised following experimental research attributed to Arthur Casagrande. His procedure quantified and defined results for liquid limit, as outlined on the next page.
Casagrande’s Modified Test ~ a refinement of Atterberg’s test using a metal bowl of about 100 mm diameter known as a Casagrande* cup. Into this the soil sample is placed and a 13 mm standard groove cut through the middle. By rotating a cam, the cup drops 10 mm onto a rubber base. Liquid limit is determined by measuring the moisture content (MC) of samples when the groove closes at 25 drops of the cup.

\[MC = \frac{\text{Mass of moist sample} - \text{Mass of dried sample}}{\text{Mass of dried sample}} \times 100 \]

Eg. A soil sample of wet mass 200 grams having an oven dried mass of 168 grams.

\[MC = \frac{200 - 168}{168} \times 100 = 19\% \]

Casagrande Cup Test Apparatus ~

General Considerations ~ before any specific considerations and decisions can be made regarding site layout a general appreciation should be obtained by conducting a thorough site investigation at the pre-tender stage and examining in detail the drawings, specification and Bill of Quantities to formulate proposals of how the contract will be carried out if the tender is successful. This will involve a preliminary assessment of plant, materials and manpower requirements plotted against the proposed time scale in the form of a bar chart (see page 37).

Access Considerations ~ this must be considered for both on- and off-site access. Routes to and from the site must be checked as to the suitability for transporting all the requirements for the proposed works. Access on site for deliveries and general circulation must also be carefully considered.

Typical Site Access Considerations ~

- paved areas and roads forming part of the contract - can these be constructed or partially completed at an early stage and used for site access and general circulation?
- temporary road(s) to ease site circulation and/or congestion - are these necessary or desirable? can the extra cost be justified?
- approach roads - are they suitable? if not what are the alternatives? are there any one way only systems? are right hand turns into the site allowed? what are the requirements for sight lines?
Storage Considerations ~ amount and types of material to be stored. Security and weather protection requirements. Allocation of adequate areas for storing materials and allocating adequate working space around storage areas. Siting of storage areas to reduce double handling to a minimum without impeding the general site circulation and/or works in progress.

Accommodation Considerations ~ number and type of site staff anticipated. Calculate size and select units of accommodation and check to ensure compliance with the minimum welfare requirements of the Construction (Design and Management) Regulations. Select siting for offices to give easy and quick access for visitors but at the same time giving a reasonable view of the site. Select siting for mess room and toilets to reduce walking time to a minimum without impeding the general site circulation and/or works in progress.

Temporary Services Considerations ~ what, when and where are they required? Possibility of having permanent services installed at an early stage and making temporary connections for site use during the construction period. Coordination with the various service undertakings is essential.

Plant Considerations ~ what plant, when and where is it required? Static or mobile plant? If static select the most appropriate position and provide any necessary hardstanding. If mobile check on circulation routes for optimum efficiency and suitability. Provision of space and hardstanding for on-site plant maintenance if required.

Fencing and Hoarding Considerations ~ what is mandatory and what is desirable? Local vandalism record, type or types of fence and/or hoarding required. Possibility of using fencing which is part of the contract by erecting this at an early stage in the contract.

Safety and Health Considerations ~ check to ensure that outcome of the above considerations comply with the minimum requirements set out in the various Construction Regulations and in the Health and Safety at Work, etc. Act 1974.

NB. For a typical site layout example see next page.
Site Layout Considerations

Typical Site Layout Example ~

- **Existing Trees**
- **Garages built first and used as a lock up store**
- **Protective fencing**
- **Toilets (temporary connection to drain)**
- **Site Staff Car Park**
- **Site Offices**
- **Visitors Car Park**
- **Timekeeper**
- **Telephone**
- **Electricity**
- **Temporary water supply**
- **Line of scaffold**
- **Scaffold storage**
- **Mixer**
- **Cement store**
- **Fine Aggregate**
- **Coarse Agg.**
- **Messes and Drying Rooms**
- **Paved Area**
- **Roadway**
- **Proposed 5 storey block**
- **Tower Crane**
- **Stand pipe**
- **Close-boarded hoarding with lockable entrance gates**
- **Permanent water supply**
- **Bending**
- **Reinforcement**
- **Formwork**
- **Timber Storage**
Site Security — the primary objectives of site security are:

1. Security against theft.
2. Security from vandals.
3. Protection from innocent trespassers.

The need for and type of security required will vary from site to site according to the neighbourhood, local vandalism record and the value of goods stored on site. Perimeter fencing, internal site protection and night security may all be necessary.

Typical Site Security Provisions —

- Floodlighting - dual purpose — enables work to proceed in poor daylight levels and could be used as a measure of night security
- Lockable store for small and/or valuable items
- Perimeter fencing at least 1.800 high
- Internal fencing around storage compound
- Hut for gateman to check on validity of all persons entering the site
- Close-boarded hoarding adjacent to public highway and footpath — see details on the next two pages
- Strong and lockable site entrance gates
Hoardings ~ under the Highways Act 1980 a close-boarded fence hoarding must be erected prior to the commencement of building operations if such operations are adjacent to a public footpath or highway. The hoarding needs to be adequately constructed to provide protection for the public, resist impact damage, resist anticipated wind pressures and adequately lit at night. Before a hoarding can be erected a licence or permit must be obtained from the local authority who will usually require 10 to 20 days' notice. The licence will set out the minimum local authority requirements for hoardings and define the time limit period of the licence.

Typical Hoarding Details ~

- **200 x 75** softwood posts at **1.500 c/£**
- **75 x 75** softwood sheeting rails fixed to posts
- **2.400** high x **1.200** wide external quality plywood sheets fixed to timber rails - some local authorities require the facing to be painted a light colour
- Minimum working space **1.000**
- **1.200 minimum**
- **900 minimum**
- **150mm minimum mass concrete surround**
- Ground level
- Bulkhead night warning lights
Hoardings can be constructed using other materials such as a frame of scaffold tubing faced with corrugated sheeting. Return ends and access by means of a lockable gate or door may also be required.

100 x 50 raking struts at 2,000°C if required
75 x 75 sheeting rails fixed to posts

50 x 50 fixing stakes

100 x 100 precast concrete spurs set in mass concrete to project 1,000

150mm minimum mass concrete surround

All timber to be softwood G.S. grade

bulkhead night warning light
2.400 high x 1.200 wide external quality plywood or similar sheets fixed to timber rails
100 x 100 posts at 2,000°C

2.200

1.200 min.

900 min.

300 x 300 timber fender painted white

footway with ramps at each end out of sheet material decking on 125 x 50 joists at 450°C
Site Lighting

Site Lighting – this can be used effectively to enable work to continue during periods of inadequate daylight. It can also be used as a deterrent to would-be trespassers. Site lighting can be employed externally to illuminate the storage and circulation areas and internally for general movement and for specific work tasks. The types of lamp available range from simple tungsten filament lamps to tungsten halogen and discharge lamps. The arrangement of site lighting can be static where the lamps are fixed to support poles or mounted on items of fixed plant such as scaffolding and tower cranes. Alternatively the lamps can be sited locally where the work is in progress by being mounted on a movable support or handheld with a trailing lead. Whenever the position of site lighting is such that it can be manhandled it should be run on a reduced voltage of 110V single phase as opposed to the mains voltage of 230V.

To plan an adequate system of site lighting the types of activity must be defined and given an illumination target value which is quoted in lux (lx). Recommended minimum target values for building activities are:

External lighting
- general circulation 10 lx
- materials handling

Internal lighting
- general circulation 5 lx
- general working areas 15 lx
- concreting activities 50 lx
- carpentry and joinery
 - bricklaying 100 lx
 - plastering
- painting and decorating
- site offices 200 lx
- drawing board positions 300 lx

Such target values do not take into account deterioration, dirt or abnormal conditions; therefore it is usual to plan for at least twice the recommended target values. Generally the manufacturers will provide guidance as to the best arrangement to use in any particular situation but lamp requirements can be calculated thus:

$$\text{Total lumens required} = \frac{\text{area to be illuminated (m}^2\text{)} \times \text{target value (lx)}}{\text{utilisation factor 0.23 [dispersive lights 0.27]}}$$

After choosing lamp type to be used:

$$\text{Number of lamps required} = \frac{\text{total lumens required}}{\text{lumen output of chosen lamp}}$$
Typical Site Lighting Arrangement:

Area lighting using high mounted lamps:

Area lighting using overhead dispersive lights suspended from a grid or from the structure:

Typical minimum heights for dispersive lamps:

- Fluorescent 40 to 125W - 2.500 m
- Tungsten filament 300W - 3.000 m
Walkway and Local Lighting ~ to illuminate the general circulation routes bulkhead and/or festoon lighting could be used either on a standard mains voltage of 230V or on a reduced voltage of 110V. For local lighting at the place of work hand lamps with trailing leads or lamp fittings on stands can be used and positioned to give the maximum amount of illumination without unacceptable shadow cast.

Typical Walkway and Local Lighting Fittings ~
Electrical Supply to Building Sites ~ a supply of electricity is usually required at an early stage in the contract to provide light and power to the units of accommodation. As the work progresses power could also be required for site lighting, handheld power tools and large items of plant. The supply of electricity to a building site is the subject of a contract between the contractor and the local area electricity company who will want to know the date when supply is required; site address together with a block plan of the site; final load demand of proposed building and an estimate of the maximum load demand in kilowatts for the construction period. The latter can be estimated by allowing 10 W/m² of the total floor area of the proposed building plus an allowance for high load equipment such as cranes. The installation should be undertaken by a competent electrical contractor to ensure that it complies with all the statutory rules and regulations for the supply of electricity to building sites.

Typical Supply and Distribution Equipment ~

The units must be strong, durable and resistant to rain penetration with adequate weather seals to all access panels and doors. All plug and socket outlets should be colour coded: 400 V – red; 230 V – blue; 110 V – yellow.
Office Accommodation ~ the arrangements for office accommodation to be provided on site is a matter of choice for each individual contractor. Generally, separate offices would be provided for site agent, clerk of works, administrative staff, site surveyors and sales staff.

The minimum requirements of such accommodation are governed by the Offices, Shops and Railway Premises Act 1963 unless they are:

1. Mobile units in use for not more then six months.
2. Fixed units in use for not more than six weeks.
3. Any type of unit in use for not more than 21 man hours per week.
4. Office for exclusive use of self-employed person.
5. Office used by family-only staff.

Sizing Example ~

Office for site agent and assistant plus an allowance for three visitors.
Assume an internal average height of 2'400.
Allow 3.7 m² minimum per person and 11.5 m³ minimum per person.
Minimum area = 5 × 3.7 = 18.5 m²
Minimum volume = 5 × 11.5 = 57.5 m³

Assume office width of 3'000 then minimum length required is
= \frac{57.5}{3 \times 2.4} = \frac{57.5}{7.2} = 7.986 \text{ say } 8'000

Area check 3 × 8 = 24 m² which is > 18.5 m² : satisfactory

Typical Example ~

Portable cabin with four adjustable steel legs with attachments for stacking. Panelling of galvanised steel sheet and rigid insulation core. Plasterboard inner lining to walls and ceiling. Pyro-shield windows with steel shutters and a high security steel door.

Ref. Fire prevention on construction sites ~ the joint code of practice on protection from fire of construction sites and buildings undergoing renovation. Published by Construction Industry Publications and The Fire Protection Association.
Applicable where the work is notifiable to the HSE, i.e. work extends to more than 30 days or it involves more than 500 person days.

First aid:
• box readily accessible and distinctly marked.
• contents sufficient for the number of persons on site.
• person appointed with responsibility for first aid facilities and calls to emergency ambulance service (not necessarily a qualified first aider).
• information displayed confirming name of appointed person.
• person trained (first aider) in first aid at work holding an HSE recognised FAW qualification or an emergency first aid at work EFAW qualification.

<table>
<thead>
<tr>
<th>No. of site personnel</th>
<th>Minimum requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>One appointed person preferably trained in first aid</td>
</tr>
<tr>
<td>5 – 50</td>
<td>One trained in EFAW or FAW depending on assessment of possible injuries</td>
</tr>
<tr>
<td>> 50</td>
<td>One trained in FAW for every 50 persons or part thereof</td>
</tr>
</tbody>
</table>

Sanitary facilities ~
• toilets, separate male and female if possible.
• lockable doors.

Minimum where men and women are employed:

<table>
<thead>
<tr>
<th>No. of persons on site</th>
<th>No. of WCs</th>
<th>No. of washbasins</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6 – 25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>26 – 50</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>51 – 75</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>> 75</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>90 – 125</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>126 – 150</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Minimum where only men are employed:

<table>
<thead>
<tr>
<th>No. of men on site</th>
<th>No. of WCs</th>
<th>No. of urinals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16 – 30</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>31 – 45</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>46 – 60</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>61 – 75</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>76 – 90</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>91 – 100</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Portable toilets for use where there is no plumbing and drainage, at least one per seven persons, emptied at least once a week.
Washing facilities:
- next to toilets and changing areas.
- hot and cold water or mixed warm water.
- soap, towels or hot air dryer.
- adequate ventilation and lighting.
- washbasins large enough to wash face, hands and forearms.
- showers for particularly dirty work.

Drinking water:
- wholesome supply direct from the mains.
- bottled water acceptable if mains supply unavailable.
- cups or other drinking vessels at outlets or a drinking fountain.

Accommodation for rest, shelter, changing and eating:
- separate provisions if men and women are on site.
- located close to washing facilities.
- heated place for shelter from inclement weather.
- space for changing with security for personal clothing, etc.
- lockers and/or place to hang clothes.
- place for wet clothing to be dried.
- rest facilities with tables and raised-back chairs.
- ventilation and lighting.
- means for heating water and warming food unless a separate provision is made for providing meals.

Note: All facilities to be cleaned regularly and serviced with soap, paper, towels, etc.

Refs.: Health and Safety at Work, etc. Act 1974.
- Construction (Design and Management) Regulations 2007
 [incorporating the Construction (Health, Safety and Welfare) Regulations of 1996].
- Health and Safety (First Aid) Regulations 1981.

See also requirements and responsibilities for personal protective equipment and clothing summarised on the next page.
Definition — ‘all equipment (including clothing affording protection against the weather) which is intended to be worn or held by a person at work which protects them against one or more risks to their health and safety.’ Personal Protective Equipment Regulations.

Provision — by an employer at no cost to employees. Self-employed to provide their own, unless in an employer-employee relationship.

Types of PPE generally required —
Face and eyes:
• disposable face masks.
• respirators/breathing apparatus (special training required).
• air-fed helmets (special training required).
• safety glasses, similar to ordinary glasses, may have side shields.
• shield, one-piece moulded lens worn over other glasses.
• goggles, flexible plastic frame with elastic headband.
• face guard, shield or visor to fully enclose the eyes from dust, etc.

Hearing:
• earmuffs – helmet mounted available.
• earplugs and ear inserts (canal caps).

Legs and feet:
• safety boots/shoes, steel toe cap and slip-resistant sole.
• Wellington boots, steel toe cap and studded soles available.
• anti-static electricity insulated footwear.
• knee pads, gaiters, leggings and spats.

Body:
• high visibility waistcoats.
• overalls, coveralls and boiler suits.
• aprons, chain mail or leather.
• life jackets.
• safety harnesses.
• insulated and waterproof clothing.

Hands:
• gloves, waterproof and/or insulating.
• gauntlets.
• armlets and wristcuffs.

Risk assessment —
Hazard — any situation that has the potential to harm.
Risk — possibility of damage, injury or loss caused by a hazard.
Responsibility — all persons in and associated with the work place.
Site Storage ~ materials stored on site prior to being used or fixed may require protection for security reasons or against the adverse effects which can be caused by exposure to the elements.

Small and Valuable Items ~ these should be kept in a secure and lockable store. Similar items should be stored together in a rack or bin system and only issued against an authorised requisition.

Large or Bulk Storage Items ~ for security protection these items can be stored within a lockable fenced compound. The form of fencing chosen may give visual security by being of an open nature but these are generally easier to climb than the close-boarded type of fence which lacks the visual security property.

Typical Storage Compound Fencing ~

Close-boarded fences can be constructed on the same methods used for hoardings - see pages 116 & 117.

Alternative Fence Types ~ woven wire fence, strained wire fence, cleft chestnut pale fence, wooden palisade fence, wooden post and rail fence and metal fences - see BS 1722: Fences, for details.
Storage of Materials ~ this can be defined as the provision of adequate space, protection and control for building materials and components held on site during the construction process. The actual requirements for specific items should be familiar to students who have completed studies in construction technology at an introductory level but the need for storage and control of materials held on site can be analysed further:

1. Physical Properties – size, shape, weight and mode of delivery will assist in determining the safe handling and stacking method(s) to be employed on site, which in turn will enable handling and storage costs to be estimated.

2. Organisation – this is the planning process of ensuring that all the materials required are delivered to site at the correct time, in sufficient quantity, of the right quality, the means of unloading is available and that adequate space for storage or stacking has been allocated.

3. Protection – building materials and components can be classified as durable or non-durable; the latter will usually require some form of weather protection to prevent deterioration whilst in store.

4. Security – many building materials have a high resale and/or usage value to persons other than those for whom they were ordered and unless site security is adequate material losses can become unacceptable.

5. Costs – to achieve an economic balance of how much expenditure can be allocated to site storage facilities the following should be taken into account:

 • storage areas, fencing, racks, bins, etc.
 • protection requirements.
 • handling, transporting and stacking requirements.
 • salaries and wages of staff involved in storage of materials and components.
 • heating and/or lighting if required.
 • allowance for losses due to wastage, deterioration, vandalism and theft.
 • facilities to be provided for subcontractors.

6. Control – checking quality and quantity of materials at delivery and during storage period, recording delivery and issue of materials and monitoring stock holdings.
Site Storage Space ~ the location and size(s) of space to be allocated for any particular material should be planned by calculating the area(s) required and by taking into account all the relevant factors before selecting the most appropriate position on site in terms of handling, storage and convenience. Failure to carry out this simple planning exercise can result in chaos on site or having on site more materials than there is storage space available.

Calculation of Storage Space Requirements ~ each site will present its own problems since a certain amount of site space must be allocated to the units of accommodation, car parking, circulation and working areas, therefore the amount of space available for materials storage may be limited. The size of the materials or component being ordered must be known together with the proposed method of storage and this may vary between different sites of similar building activities. There are therefore no standard solutions for allocating site storage space and each site must be considered separately to suit its own requirements.

Typical Examples ~

Bricks - quantity = 15,200 to be delivered in strapped packs of 380 bricks per pack each being 1100mm wide x 670mm long x 850mm high. Unloading and stacking to be by forklift truck to form two rows two packs high.

Area required:- number of packs per row = \(\frac{15,200}{380 \times 2} = 20 \)

length of row = \(10 \times 670 = 6,700 \)

width of row = \(2 \times 1100 = 2,200 \)

allowance for forklift approach in front of stack = 5,000 :: minimum brick storage area = 6,700 long x 7,200 wide

Timber - to be stored in open-sided top covered racks constructed of standard scaffold tubes. Maximum length of timber ordered = 5,600. Allow for rack to accept at least 4 No. 300mm-wide timbers placed side by side then minimum width required = \(4 \times 300 = 1,200 \)

Minimum plan area for timber storage rack = 5,600 x 1,200

Allow for end loading of rack equal to length of rack :: minimum timber storage area = 11,200 long x 1,200 wide

Height of rack to be not more than \(3 \times \) width = 3,600

Areas for other materials stored on site can be calculated using the basic principles contained in the examples above.
Site Allocation for Materials Storage - the area and type of storage required can be determined as shown on pages 126 to 128, but the allocation of an actual position on site will depend on:

1. Space available after areas for units of accommodation have been allocated.
3. Relationship of storage area(s) to activity area(s) - the distance between them needs to be kept as short as possible to reduce transportation needs in terms of time and costs to the minimum. Alternatively storage areas and work areas need to be sited within the reach of any static transport plant such as a tower crane.
4. Security - needs to be considered in the context of site operations, vandalism and theft.
5. Stockholding policy - too little storage could result in delays awaiting materials to be delivered, too much storage can be expensive in terms of weather and security protection requirements apart from the capital used to purchase the materials stored on site.

Typical Example ~

NB. temporary site services omitted for clarity.
Bricks may be supplied loose or strapped in unit loads and stored on timber pallets.

- Bricks stacked on edge in rows.
- Bricks in alternate directions to form end columns.
- Level, well-drained ground.
- Polythene or similar cover weighted at bottom to protect bricks against atmospheric pollution and/or inclement weather.
- Plastic or metallic straps.
- Timber pallet.
- Typical unit loads of 76, 152, 228, 380 and 416 bricks.

Blocks may be supplied loose or in unit loads on timber pallets.

- Blocks stacked in 'columns'.
- Protective cover.
- 8 courses maximum.

Roofing Tiles may be supplied loose, in plastic-wrapped packs or in unit loads on timber pallets.

- Ridge tiles stored on ends.
- End laid flat and staggered.
- 6 rows maximum.
Drainage Pipes — supplied loose or strapped together on timber pallets

Gullies, etc. should be stored upside down and supported to remain level

Baths — stacked or nested vertically or horizontally on timber battens

Timber and Joinery Items — should be stored horizontally and covered but with provision for free air flow

Basins — stored similar to baths but not more than four high if nested one on top of another

Corrugated and Similar Sheet Materials — stored flat on a level surface and covered with a protective polythene or similar sheet material

Cement, Sand and Aggregates — for supply and storage details see pages 326 and 332.
Site Tests – the majority of materials and components arriving on site will conform to the minimum recommendations of the appropriate British Standard and therefore the only tests which need to be applied are those of checking quantity received against amount stated on the delivery note, ensuring quality is as ordered and a visual inspection to reject damaged or broken goods. The latter should be recorded on the delivery note and entered in the site records. Certain site tests can however be carried out on some materials to establish specific data such as the moisture content of timber which can be read direct from a moisture meter. Other simple site tests are given in the various British Standards to ascertain compliance with the recommendations, such as tests for dimensional tolerances and changes given in BS EN 771-1 and BS EN 772-16 which cover random sampling of clay bricks of up to 10 units. An alternative site test can be carried out by measuring a sample of 24 bricks taken at random from a delivered load thus:

Refs.: BS EN 772-16: Methods of test for masonry units.
BS EN 771-1: Specification for masonry units.
Site Test ~ apart from the test outlined on page 132 site tests on materials which are to be combined to form another material such as concrete can also be tested to establish certain properties which if not known could affect the consistency and/or quality of the final material.

Typical Example ~ Testing Sand for Bulking

This data is required when batching concrete by volume – test made at commencement of mixing and if change in weather

1. Rule to measure depth of damp sand (say 150mm)
 - Straight-sided container
 - Loosely placed damp sand sample

2. Sufficient clean water to half fill container
 - Dam sand sample removed from container and set aside

3. Rule to measure depth of saturated sand (say 124mm)
 - Water
 - Saturated sand – sand placed in water 50% at a time and tamped with a rod to remove any air

4. Calculation:
 \[\text{bulking} = \frac{\text{difference in height between damp and saturated sand}}{\text{depth of saturated sand}} \]
 \[\% \text{ bulking} = \frac{150 - 124}{124} \times 100 = \frac{26}{124} \times 100 = 20.96774\% \]

Therefore volume of sand should be increased by 21% over that quoted in the specification.
NB. a given weight of saturated sand will occupy the same space as when dry but more space when damp.
Silt Test for Sand ~ the object of this test is to ascertain the cleanliness of sand by establishing the percentage of silt present in a natural sand since too much silt will weaken the concrete.

Obtaining Samples for Laboratory Testing ~ these tests may be required for checking aggregate grading by means of a sieve test, checking quality or checking for organic impurities. But whatever the reason the sample must be truly representative of the whole:

1. Samples extracted by means of a scoop from at least ten different positions in the pile.

Sample required:
- Fine aggregate - 50 kg
- Coarse aggregate - 200 kg

Ref. BS EN 12620: Aggregates for concrete.
The quality of site mixed concrete should be monitored, especially to ensure uniformity of mix components and consistency of batches. When constituents are known to be constant by design, the water/cement ratio of consecutive batches can be compared by using a slump test. Water for hydration is about one quarter of the cement weight, but if a w/c ratio of 0.25 were used the mix would be too stiff and unworkable. Therefore, a w/c ratio of 0.5 is more usual: the additional water providing a lubricant for the aggregates and cement. Increasing the w/c ratio above 0.5 will make the concrete easier to work, but it will be detrimental to the final compressive strength (see page 329) unless other measures are incorporated to counter this, e.g. steel or fabric reinforcement.

Slump Test Equipment ~ shown below, an open ended frustum of a cone, tamping rod and a rule. Dimensions in mm.

Procedure ~ the cone is one-quarter filled with concrete and tamped 25 times. Further filling and tamping is repeated three more times until the cone is full and the sample levelled off. The cone is removed and the concrete slump measured. The measurement should be consistent for all samples of concrete being used in the same situation.

Typical Slump Specification ~ generally between 50 and 100 mm depending on application. See page 331 for slump consistency classes applicable to standard prescribed site batched concrete mixes.

Procedure for Testing Batched Concrete from Source ~

- Wet concrete samples extracted from the mixer batch are placed into machine faced steel casting moulds in 50mm layers.
- Each layer compacted at least 35 times (150mm cube) or 25 times (100mm cube) with a tamping bar.
- Alternatively, each layer may be consolidated by external vibration from an electric or pneumatic hammer.
- Surplus concrete trowelled off and samples marked with time, date and job reference.
- Samples left for 24 hours ± 30 minutes and covered with a damp cloth.
- After 24 hours, samples removed from moulds and submersed in water at 20°C ± 2°C.
- At 7 days, hydraulic compression test applied to sample cubes to determine stress failure strength.
- If strength specification not achieved, other samples from the same batch tested at 28 days.
- If 28 day samples fail compressive strength requirement, core samples may be taken from placed concrete for further laboratory analysis.

Equipment ~

- 25 x 25mm square end tamping bar
- Concrete sample with trowelled surface and identification
- 150 x 150 x 150mm standard steel test cube mould thinly coated inside with oil, if aggregate ≤ 20mm a 100mm cube mould may be used
- Pressure gauge
- Hydraulic pressure applied to the sides of sample as cast
- Test cube
- Smooth plane steel plates
- Sample before test
- Sample after stress failure

28 day characteristic crushing strength categories below which not more than 5% of test results are permitted to fail are: 7.5, 10, 15, 20, 25, 30 and 35N/mm². 40, 45 and 50N/mm² are also specified, mainly for prestressed reinforced concrete.

Ref. BS EN 12390-1: Testing hardened concrete. Shape, dimensions and other requirements for specimens and moulds.
Non-destructive testing of concrete. Also known as in-place or in-situ tests.

Changes over time and in different exposures can be monitored.

References: BS 6089: Assessment of in-situ compressive strength in structures and precast concrete components.
BS 1881: Testing concrete.
BS EN 13791: Assessment of in-situ compressive strength in structures and precast concrete components.

Provides information on: strength in-situ, voids, flaws, cracks and deterioration.

Rebound hammer test – attributed to Ernst Schmidt after he devised the impact hammer in 1948. It works on the principle of an elastic mass rebounding off a hard surface. Varying surface densities will affect impact and propagation of stress waves. These can be recorded on a numerical scale known as rebound numbers. It has limited application to smooth surfaces of concrete only. False results may occur where there are local variations in the concrete, such as a large piece of aggregate immediately below the impact surface. Rebound numbers can be graphically plotted to correspond with compressive strength.

Penetration or Windsor probe test ~ there are various interpretations of this test. It is a measure of the penetration of a steel alloy rod, fired by a predetermined amount of energy into concrete. In principle, the depth of penetration is inversely proportional to the concrete compressive strength. Several recordings are necessary to obtain a fair assessment and some can be discarded particularly where the probe cannot penetrate some dense aggregates. The advantage over the rebound hammer is provision of test results at a greater depth (up to 50mm).

Pull-out test ~ this is not entirely non-destructive as there will be some surface damage, albeit easily repaired. A number of circular bars of steel with enlarged ends are cast into the concrete as work proceeds. This requires careful planning and location of bars with corresponding voids provided in the formwork. At the appropriate time, the bar and a piece of concrete are pulled out by tension jack. Although the concrete fails in tension and shear, the pull-out force can be correlated to the compressive strength of the concrete.

Vibration test — a number of electronic tests have been devised, which include measurement of ultrasonic pulse velocity through concrete. This applies the principle of recording a pulse at predetermined frequencies over a given distance. The apparatus includes transducers in contact with the concrete, pulse generator, amplifier, and time measurement to digital display circuit. For converting the data to concrete compressive strength, see BS EN 12504-4: Testing concrete. Determination of ultrasonic pulse velocity.

A variation, using resonant frequency, measures vibrations produced at one end of a concrete sample against a receiver or pick up at the other. The driving unit or exciter is activated by a variable frequency oscillator to generate vibrations varying in resonance, depending on the concrete quality. The calculation of compressive strength by conversion of amplified vibration data is by formulae found in BS 1881-209: Testing concrete. Recommendations for the measurement of dynamic modulus of elasticity.

Other relevant standards:

The quality of softwood timber for structural use depends very much on the environment in which it is grown and the species selected. Timber can be visually strength graded, but this is unlikely to occur at the construction site except for a general examination for obvious handling defects and damage during transit. Site inspection will be to determine that the grading authority’s markings on the timber comply with that specified for the application.

Format of strength grade markings on softwood timber for structural uses ~

```
<table>
<thead>
<tr>
<th>accredited certification authority (see below)*</th>
<th>grader or company licence number</th>
<th>British spruce</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRADA</td>
<td>1234</td>
<td>B/S</td>
</tr>
<tr>
<td>BS 4978</td>
<td>KD</td>
<td>GS</td>
</tr>
<tr>
<td>kiln dried</td>
<td>grade - general structural (SS = special structural)</td>
<td></td>
</tr>
<tr>
<td>accredited certification authority (see below)*</td>
<td>grader or company licence number</td>
<td>European whitewood/ redwood</td>
</tr>
<tr>
<td>C.A.T.G.</td>
<td>123/456</td>
<td>EW/ER</td>
</tr>
<tr>
<td>BS EN 14081</td>
<td>DRY</td>
<td>mss</td>
</tr>
<tr>
<td>British Standard quality reference</td>
<td>alternative condition indicator</td>
<td>BS strength class</td>
</tr>
<tr>
<td>DRY</td>
<td>mss</td>
<td>C24</td>
</tr>
</tbody>
</table>
```

*Accredited certification authorities include BM TRADA Certification Ltd. and Certification And Timber Grading Ltd.

Grading ~ either visually or by computerised machine. Individual rectangular timber sections are assessed against permissible defect limitations and grade marked accordingly.

UK grading standard ~ BS 4978.
European grading standard ~ BS EN 14081 (four parts).

The two principal grades apart from rejects are GS (general structural) and SS (special structural) preceded with an M if graded by machine.

Additional specification is to BS EN 338: Structural timber. Strength classes. This standard provides softwood strength classifications from C14 to C40 as well as a separate classification of hardwoods.

A guide to softwood grades with strength classes for timber from the UK, Europe and North America ~

<table>
<thead>
<tr>
<th>Source/species</th>
<th>Strength class (BS EN 338)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C14</td>
</tr>
<tr>
<td>UK:</td>
<td></td>
</tr>
<tr>
<td>British pine</td>
<td>GS</td>
</tr>
<tr>
<td>British spruce</td>
<td>GS</td>
</tr>
<tr>
<td>Douglas fir</td>
<td>GS</td>
</tr>
<tr>
<td>Larch</td>
<td>GS</td>
</tr>
<tr>
<td>Ireland:</td>
<td></td>
</tr>
<tr>
<td>Sitka and Norway spruce</td>
<td>GS</td>
</tr>
<tr>
<td>Europe:</td>
<td></td>
</tr>
<tr>
<td>Redwood or white-wood</td>
<td>GS</td>
</tr>
<tr>
<td>USA:</td>
<td></td>
</tr>
<tr>
<td>Western whitewood</td>
<td>GS</td>
</tr>
<tr>
<td>Southern pine</td>
<td>GS</td>
</tr>
<tr>
<td>USA/Canada:</td>
<td></td>
</tr>
<tr>
<td>Spruce/pine/fir or hemlock</td>
<td>GS</td>
</tr>
<tr>
<td>Douglas fir and larch</td>
<td>GS</td>
</tr>
<tr>
<td>Canada:</td>
<td></td>
</tr>
<tr>
<td>Western red cedar</td>
<td>GS</td>
</tr>
<tr>
<td>Sitka spruce</td>
<td>GS</td>
</tr>
</tbody>
</table>
BS EN 338: Structural softwood classifications and typical strength properties

<table>
<thead>
<tr>
<th>BS EN 338 strength class</th>
<th>Bending parallel to grain (N/mm²)</th>
<th>Tension parallel to grain (N/mm²)</th>
<th>Compression parallel to grain (N/mm²)</th>
<th>Compression perpendicular to grain (N/mm²)</th>
<th>Shear parallel to grain (N/mm²)</th>
<th>Modulus of elasticity Mean (N/mm²)</th>
<th>Modulus of elasticity Minimum (N/mm²)</th>
<th>Characteristic density (kg/m³)</th>
<th>Average density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14</td>
<td>4.1</td>
<td>2.5</td>
<td>5.2</td>
<td>2.1</td>
<td>0.60</td>
<td>6800</td>
<td>4600</td>
<td>290</td>
<td>350</td>
</tr>
<tr>
<td>C16</td>
<td>5.3</td>
<td>3.2</td>
<td>6.8</td>
<td>2.2</td>
<td>0.67</td>
<td>8800</td>
<td>5800</td>
<td>310</td>
<td>370</td>
</tr>
<tr>
<td>C18</td>
<td>5.8</td>
<td>3.5</td>
<td>7.1</td>
<td>2.2</td>
<td>0.67</td>
<td>9100</td>
<td>6000</td>
<td>320</td>
<td>380</td>
</tr>
<tr>
<td>C22</td>
<td>6.8</td>
<td>4.1</td>
<td>7.5</td>
<td>2.3</td>
<td>0.71</td>
<td>9700</td>
<td>6500</td>
<td>340</td>
<td>410</td>
</tr>
<tr>
<td>C24</td>
<td>7.5</td>
<td>4.5</td>
<td>7.9</td>
<td>2.4</td>
<td>0.71</td>
<td>10800</td>
<td>7200</td>
<td>350</td>
<td>420</td>
</tr>
<tr>
<td>TR26</td>
<td>10.0</td>
<td>6.0</td>
<td>8.2</td>
<td>2.5</td>
<td>1.10</td>
<td>11000</td>
<td>7400</td>
<td>370</td>
<td>450</td>
</tr>
<tr>
<td>C27</td>
<td>10.0</td>
<td>6.0</td>
<td>8.2</td>
<td>2.5</td>
<td>1.10</td>
<td>12300</td>
<td>8200</td>
<td>370</td>
<td>450</td>
</tr>
<tr>
<td>C30</td>
<td>11.0</td>
<td>6.6</td>
<td>8.6</td>
<td>2.7</td>
<td>1.20</td>
<td>12300</td>
<td>8200</td>
<td>380</td>
<td>460</td>
</tr>
<tr>
<td>C35</td>
<td>12.0</td>
<td>7.2</td>
<td>8.7</td>
<td>2.9</td>
<td>1.30</td>
<td>13400</td>
<td>9000</td>
<td>400</td>
<td>480</td>
</tr>
<tr>
<td>C40</td>
<td>13.0</td>
<td>7.8</td>
<td>8.7</td>
<td>3.0</td>
<td>1.40</td>
<td>14500</td>
<td>10000</td>
<td>420</td>
<td>500</td>
</tr>
</tbody>
</table>

Notes: 1. Strength class TR26 is specifically for the manufacture of trussed rafters.
2. Characteristic density values are given specifically for the design of joints. Average density is appropriate for calculation of dead load.
3. For a worked example of a softwood timber joist/beam design using data for strength classification C24 (e.g. SS graded European redwood) see pages 777 and 778.
Visual strength grading ~ ‘process by which a piece of timber can be sorted, by means of visual inspection, into a grade to which characteristic values of strength, stiffness and density may be allocated.’ Definition from BS EN 14081-1.

Characteristics:

Knots ~ branch growth from or through the main section of timber weakening the overall structural strength. Measured by comparing the sum of the projected cross sectional knot area with the cross-sectional area of the piece of timber. This is known as the knot area ratio (KAR). Knots close to the edge of section have greater structural significance; therefore this area is represented as a margin condition at the top and bottom quarter of a section. A margin condition exists when more than half the top or bottom quarter of a section is occupied by knots.

MKAR = Margin knot area ratio.
TKAR = Total knot area ratio.
Fissures and resin pockets ~ defects in growth. Fissures, also known as shakes, are usually caused by separation of annual growth rings. Fissures and resin pockets must be limited in structural timber as they reduce resistance to shear and bending parallel to the grain.

Slope of grain ~ an irregularity in growth or where the log is not cut parallel to the grain. If excessive this will produce a weakness in shear. Measurement is by scoring a line along the grain of the timber surface and comparing this with the parallel sides of the section.

Insect damage ~ no active allowed. Woodworm holes acceptable if only nominal. Wood wasp holes not permitted.

Sapstain ~ acceptable.
Wane or waney edge ~ occurs on timber cut close to the outer surface of the log producing incomplete corners. Measurement is parallel to the edge or face of section and it is expressed as a fraction of the surface dimension.

Growth rate ~ measurement is applied to the annual growth ring separation averaged over a line 75mm long. If pith is present the line should commence 25mm beyond and if 75mm is impractical to achieve, the longest possible line is taken.

![Diagram of wane calculation]

Wane is expressed as: \[D = \frac{A+B}{C} \]

if pith is absent measure 75mm through centre of the end of timber

Distortion ~ measurement over the length and width of section to determine the amount of bow, spring and twist.
Characteristics and tolerances of GS and SS graded timber

<table>
<thead>
<tr>
<th>Criteria</th>
<th>GS</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAR: MKAR ≤ 1/2</td>
<td>MKAR ≤ 1/2</td>
<td>MKAR ≤ 1/2</td>
</tr>
<tr>
<td>No margin condition</td>
<td>TKAR ≤ 1/2</td>
<td>TKAR ≤ 1/3</td>
</tr>
<tr>
<td>Or:</td>
<td>MKAR > 1/2</td>
<td>MKAR > 1/2</td>
</tr>
<tr>
<td>Margin condition</td>
<td>TKAR ≤ 1/3</td>
<td>TKAR ≤ 1/5</td>
</tr>
</tbody>
</table>

Fissures and resin pockets:
- **Not through thickness:**
 - < 1.5 m or 1/2 timber length take lesser
 - Through thickness:
 - < 1.0 m or 1/4 timber length take lesser
 - If at ends fissure length maximum 2 × timber width

Slope of grain:
- Maximum 1 in 6

Wane:
- Maximum 1/3 of the full edge and face of the section – length not limited

Resin pockets:
- Not through thickness: Unlimited if shorter than width of section otherwise as for fissures
- Through thickness: Unlimited if shorter than 1/2 width of section otherwise as for fissures

Growth rate of annual rings:
- Average width or growth < 10 mm
- Average width or growth < 6 mm

Distortion:
- **-bow:** < 20 mm over 2 m
- **-spring:** < 12 mm over 2 m
- **-twist:** < 2 mm per 25 mm width over 2 m
- < 10 mm over 2 m
- < 8 mm over 2 m
- < 1 mm per 25 mm width over 2 m
Structural softwood cross-sectional size has established terminology such as sawn, basic and unwrought as produced by conversion of the log into commercial dimensions, e.g. 100 × 50 mm and 225 × 75 mm (4” × 2” and 9” × 3” respectively, as the nearest imperial sizes).

Timber is converted in imperial and metric sizes depending on its source in the world. Thereafter, standardisation can be undertaken by machine planing the surfaces to produce uniformly compatible and practically convenient dimensions, i.e. 225 mm is not the same as 9”. Planed timber has been variously described as nominal, regularised and wrought, e.g. 100 × 50 mm sawn becomes 97 × 47 mm when planed and is otherwise known as ex. 100 × 50 mm, where ex means out of.

Guidance in BS EN 336 requires the sizes of timber from a supplier to be redefined as ‘Target Sizes’ within the following tolerances:

T1 ~ Thickness and width ≤ 100 mm, -1 to +3 mm.
 Thickness and width > 100 mm, -2 to +4 mm.

T2 ~ Thickness and width ≤ 100 mm, -1 to +1 mm.
 Thickness and width > 100 mm, -1.5 to +1.5 mm.

T1 applies to sawn timber, e.g. 100 × 75 mm.
T2 applies to planed timber, e.g. 97 × 72 mm.

Further example ~ a section of timber required to be 195 mm planed × 50 mm sawn is specified as: 195 (T2) × 50 (T1).

Target sizes for sawn softwood (T1) ~
50, 63, 75, 100, 125, 150, 175, 200, 225, 250 and 300 mm.

Target sizes for planed/machined softwood (T2) ~
47, 60, 72, 97, 120, 145, 170, 195, 220, 245 and 295 mm.

Ref. BS EN 336: Structural timber. Sizes, permitted deviations.
Conversion ~ after timber is sawn into commercially useable sections, it is seasoned (oven dried) to a moisture content of between 10% and 15% depending on species.

\[
\text{Moisture content} = \frac{\text{Mass when wet} - \text{Mass when dried}}{\text{Mass when dried}} \times 100\%.
\]

Protection ~ the moisture content of seasoned timber is much less than timber in its natural state, therefore timber will readily absorb water if it is unprotected.

The effects of water absorption may be:

- Deformities and distortion (see page 145).
- Rot and decay (see pages 149 and 150).
- Swelling and shrinkage.

Swelling and shrinkage will be most noticeable after fixing, unless the seasoned moisture content is maintained by correct storage at the suppliers, on site and by adequate protection in use.

Movement ~ shrinkage occurs as wood dries below its fibre saturation point. It will also expand if water is allowed to penetrate the open fibres. Volume change is not the same or even proportionally the same, as potential for movement varies directionally:

- Longitudinally - minimal, i.e. 0.1% to 0.3%.
- Transversely/radially - 2% to 6%.
- Tangentially - 5% to 10%.

\begin{align*}
\text{tangential movement} & \quad \text{e.g. 8\% in 25mm = 2mm} \\
\text{transverse or radial movement} & \quad \text{e.g. 4\% in 200 mm = 8mm} \\
\text{movement longitudinally} & \quad \text{is relatively small. e.g. 0.1\% in 2 m = 2mm}
\end{align*}
Damp conditions can be the source of many different types of wood-decaying fungi. The principal agencies of decay are:

* Dry rot (Serpula lacrymans or merulius lacrymans), and
* Wet rot (Coniophora cerabella)

Dry rot - this is the most difficult to control as its root system can penetrate damp and porous plaster, brickwork and concrete. It can also remain dormant until damp conditions encourage its growth, even though the original source of dampness is removed.

Appearance - white fungal threads which attract dampness from the air or adjacent materials. The threads develop strands bearing spores or seeds which drift with air movements to settle and germinate on timber having a moisture content exceeding about 25%. Fruiting bodies of a grey or red flat profile may also identify dry rot.

Typical surface appearance of dry rot -

Wet rot - this is limited in its development and must have moisture continually present, e.g. a permanently leaking pipe or a faulty dpc. Growth pattern is similar to dry rot, but spores will not germinate in dry timber.

Appearance - fungal threads of black or dark-brown colour. Fruiting bodies may be olive-green or dark brown and these are often the first sign of decay.

Typical surface appearance of wet rot -
Causes:
* Defective construction, e.g. broken roof tiles; no damp-proof course.
* Installation of wet timber during construction, e.g. framing sealed behind plasterboard linings; wet joists under floor decking.
* Lack of ventilation, e.g. blocked air-bricks to suspended timber ground floor; condensation in unventilated roof spaces.
* Defective water services, e.g. undetected leaks on internal pipework; blocked or broken rainwater pipes and guttering.

General treatment:
* Remove source of dampness.
* Allow affected area to dry.
* Remove and burn all affected timber and sound timber within 500mm of fungal attack.
* Remove contaminated plaster and rake out adjacent mortar joints to masonry.

Note: This is normally sufficient treatment where wet rot is identified. However, where dry rot is apparent the following additional treatment is necessary:
* Sterilise surface of concrete and masonry.
 Heat with a blow torch until the surface is too hot to touch.
 Apply a proprietary fungicide† generously to warm surface.
 Irrigate badly affected masonry and floors, i.e. provide 12mm diameter boreholes at about 500mm spacing and flood or pressure inject with fungicide.

† 20:1 dilution of water and sodium pentachlorophenate, sodium orthophenylphate or mercuric chloride. Product manufacturers’ safety in handling and use measures must be observed when applying these chemicals.

Replacement work should ensure that new timbers are pressure impregnated with a preservative. Cement and sand mixes for rendering, plastering and screeds should contain a zinc oxychloride fungicide.

Further reading –
BRE: Timber pack (ref. AP 265) – various Digests, Information Papers, Good Repair Guides and Good Building Guides.
In-situ timber treatment using timber preservatives – HSE Books.
Trees are part of our national heritage and are also the source of timber. To maintain this source a control over tree felling has been established under the Forestry Act which places the control responsibility on the Forestry Commission. Local planning authorities also have powers under the Town and Country Planning Act and the Town and Country Amenities Act to protect trees by making tree preservation orders. A TPO may be applied if the LPA consider that it is “expedient in the interests of amenity to make provision for the preservation of trees or woodlands in their area” (Section 198[1] of the Town and Country Planning Act). Before cutting down, uprooting, severing roots, topping off, lopping, damaging or destroying a tree, a formal application must be submitted to the LPA for consent. Contravention of such an order can lead to a substantial fine and a compulsion to replace any protected tree which has been removed or destroyed. Trees on building sites which are covered by a tree preservation order should be protected by a suitable fence.

Definition and interpretation of what constitutes a tree (e.g. trunk diameter, overall height, etc.) will vary and may be considered subjective. Therefore, appeals will be considered. If upheld, an agreement for replacement trees is usual, in at least the same quantity of the same species within the proposed development site. Trees, shrubs, bushes and tree roots which are to be removed from site can usually be grubbed out using handheld tools such as saws, picks and spades. Where whole trees are to be removed for relocation special labour and equipment is required to ensure that the roots, root earth ball and bark are not damaged.

Ref. BS 5837: Trees in relation to design, demolition and construction. Recommendations.
Buildings of special historic or architectural interest are protected by provisions in the Planning (Listed Buildings and Conservation Areas) Act. English Heritage, funded by the Department for Culture, Media and Sport and from donations and commercial activities, is responsible for safeguarding and protecting the character of buildings that could otherwise be lost through demolition or unsympathetic alterations, extensions, modifications, refurbishment or inadequate maintenance.

Buildings considered to be a national asset and worthy of preservation are listed. Statutory listing applies to about half-a-million buildings. This status places responsibility on their owners to keep them in good order. These buildings are legally protected, therefore proposals for development on the site that they occupy as well as proposals for both internal and external alterations are subject to a listed building consent being obtained from the local planning authority.

Examples of the type of work may include the following:
- Extensions and any demolition.
- Removal of internal walls and floors.
- Changes to room layout.
- Window and door replacement.
- Painting of unpainted surfaces.
- Exposed plumbing and electrical installations.
- Alterations to internal features, e.g. doors, panelling, fireplaces.
- Changes to existing materials/colour specifications.
- Removal of finishes to expose brickwork and structural timber.

The LPA should be consulted about all proposed work. It is a fineable offence to alter the character of listed buildings without the necessary consent and an order can be imposed on the building owner to rectify matters at their expense.

Categories of listing ~
Grade I: Buildings of exceptional interest.
Grade II*: Particularly important buildings of more than special interest.
Grade II: Buildings of special interest, warranting preservation: 90% of listed buildings are in this category.

The grading applies in England and Wales. Similar provisions exist for Northern Ireland and Scotland.
See also the Royal Commission on Historical Monuments.
Services which may be encountered on construction sites and the authority responsible are:

Water – Local Water Company

Electricity – transmission ~ RWE npower, EDF Energy and E-on.
 distribution ~ In Britain there are 14 separate regional grids managed by licensed independent network operators, e.g. Electricity North West.

Gas – Local gas or energy service providers, e.g. British Gas.

Telephones – National Telecommunications Companies, e.g. BT, and Vodaphone.

Drainage – Local Authority unless a private drain when owner(s) is (are) responsible.

All the above authorities must be notified of any proposed new services and alterations or terminations to existing services before any work is carried out.

Locating Existing Services on Site –

Method 1 – By reference to maps and plans prepared and issued by the respective responsible authority.

Method 2 – Using visual indicators ~

![Diagram of visual indicators for locating underground services]

Method 3 – Detection specialist contractor employed to trace all forms of underground services using electronic subsurface survey equipment.

Once located, position and type of service can be plotted on a map or plan, marked with special paint on hard surfaces and marked with wood pegs with indentification data on earth surfaces.
Setting Out the Building Outline — this task is usually undertaken once the site has been cleared of any debris or obstructions and any reduced-level excavation work is finished. It is usually the responsibility of the contractor to set out the building(s) using the information provided by the designer or architect. Accurate setting out is of paramount importance and should therefore only be carried out by competent persons and all their work thoroughly checked, preferably by different personnel and by a different method.

The first task in setting out the building is to establish a baseline to which all the setting out can be related. The baseline very often coincides with the building line which is a line, whose position on site is given by the local authority in front of which no development is permitted.

Typical Setting Out Example

- Outline of building marked by cord fixed to corner posts
- Diagonal checks
- Temporary bench mark or site datum post
- Base- and/or building line

90° angles obtained using site square, theodolite or builders square

Footpath
Road kerb

Setting dimensions measured with a tape, ranging rods may be required to establish straight line between corner posts

Nail in centre of post

50 x 50 corner post driven firmly into the ground

Cord marking outline of building

Outline marked on ground with dry lime or similar powder

Temporary Bench mark: this is a fixed point on site to which all levels are related and should be established at an early stage in the contract. Where possible it should relate to an ordnance bench mark. On site it can be any permanent feature such as a drain cover or a firmly driven post.
Setting Out Trenches - the objective of this task is twofold. First, it must establish the excavation size, shape and direction; and second, it must establish the width and position of the walls. The outline of building will have been set out and using this outline profile boards can be set up to control the position, width and possibly the depth of the proposed trenches. Profile boards should be set up at least 2·000 clear of trench positions so that they do not obstruct the excavation work. The level of the profile crossboard should be related to the site datum and fixed at a convenient height above ground level if a traveller is to be used to control the depth of the trench. Alternatively the trench depth can be controlled using a level and staff related to site datum. The trench width can be marked on the profile with either nails or saw cuts and with a painted band if required for identification.

NB. Corners of walls transferred from intersecting cord lines to mortar spots on concrete foundations using a spirit level.
Setting Out a Framed Building — framed buildings are usually related to a grid, the intersections of the grid lines being the centre point of an isolated or pad foundation. The grid is usually set out from a baseline which does not always form part of the grid. Setting out dimensions for locating the grid can either be given on a drawing or they will have to be accurately scaled off a general layout plan. The grid is established using a theodolite and marking the grid line intersections with stout pegs. Once the grid has been set out offset pegs or profiles can be fixed clear of any subsequent excavation work. Control of excavation depth can be by means of a traveller sighted between sight rails or by level and staff related to site datum.

Typical Details —

1st position of theodolite — sighted onto F4 and points B4 to E4 fixed and marked

2nd position of theodolite — sighted onto A4 turned 90° and points B1 to F1 fixed and marked

3rd theodolite position to fix points F2 and F3

V TBM or site datum

internal grid points fixed by setting up theodolite over any of the perimeter points

setting out dimensions to establish grid line A4 to F4

sight rail fixed at known level

fenced peg — alternative to profile

cords

profile board

excavation

traveller sighted between sight rails to control depth

1. Pad template positioned with cords between profiles and pad outline marked with dry lime or similar powder.

2. Pad pits excavated using traveller sighted between sight rails fixed at a level related to site datum.
Setting Out Reduced Level Excavations — the overall outline of the reduced level area can be set out using a theodolite, ranging rods, tape and pegs working from a baseline. To control the depth of excavation, sight rails are set up at a convenient height and at positions which will enable a traveller to be used.

Typical Details -
1. Setting up sight rails:

 - staff reading gives height of collimation of level
 - temporary bench mark or site datum post
 - ground level
 - necessary staff reading calculated to give level at desired height
 - sight line
 - sight rail fixed here
 - sight rail posts

2. Controlling excavation depth:

 - site datum post set in concrete
 - corner posts to fix outline of excavation area
 - outline of excavation area marked with dry sand or similar material
 - formation level
 - free standing traveller
 - sight rails — face painted black and white
 - edge of excavation area
 - height of traveller = desired level of sight rail — formation level
Datum ~ altitude zero taken at mean sea level. This varies between different countries, but for UK purposes it was established at Newlyn in Cornwall from tide data recorded between May 1915 and April 1921. Relative levels defined by bench marks are located throughout the country. The most common are identified as carved arrows cut into walls of permanent structures. Reference to Ordnance Survey maps of an area will indicate bench mark positions and their height above sea level, hence the name Ordnance Datum (OD).

Taking site levels ~ the nearest OD bench mark may be impractical to access. The alternative is to establish a datum or temporary bench mark (TBM) from a fixture such as a manhole cover. Otherwise, a fixed position for a TBM could be a robust post set in concrete or a cast concrete plinth set in the ground to one side of ongoing work.
Instruments consist of a level (tilting or automatic) and a staff. A tilting level is basically a telescope mounted on a tripod for stability. Correcting screws establish accuracy in the horizontal plane by air bubble in a vial and focus is by adjustable lens. Cross hairs of horizontal and vertical lines indicate image sharpness on an extending staff of 3, 4 or 5m length. Staff graduations are in 10mm intervals on an "E" pattern as shown on the next page. Estimates are taken to the nearest millimetre. An automatic level is much simpler to use, eliminating the need for manual adjustment. It is approximately levelled by centre bulb bubble. A compensator within the telescope effects fine adjustment.

Taking levels ~ an Ordnance Datum bench mark or a temporary bench mark is located. The levelling instrument and tripod are positioned on firm ground and sighted to the bench mark. Further staff height readings are taken at established positions around the site or at measured intervals corresponding to a grid pattern at convenient intervals, typically 10m. Each intersection of the grid lines represents a staff position, otherwise known as a station. Levels taken from the staff readings (4 No. from the grid corners) are computed with the plan area calculations (100m² for a 10m grid). From this the volume of site excavation or cut and fill required to level the site can be calculated.
Application - methods to determine differences in ground levels for calculation of site excavation volumes and costs.

Rise and fall:
- Staff reading at A = 3.00m, B = 1.30m
- Ground level at A = 200m above ordnance datum (AOD)
- Therefore level at B = 200m + rise (-fall if declining)
- So level at B = 200 + (3.00 - 1.30) = 201.7m

Height of collimation (HC):
- HC at A = Reduced level (RL) + staff reading
 = 200 m + 3.00m = 203m AOD
- Level at B = HC at A - staff reading at B
 = 203 - 1.30 = 201.7m

Height above mean sea level at Newlyn
- cross hairs
- carved bench mark
- view through level
Theodolite - a tripod mounted instrument designed to measure angles in the horizontal or vertical plane.

Measurement - a telescope provides for focal location between instrument and subject. Position of the scope is defined by an index of angles. The scale and presentation of angles varies from traditional micrometer readings to computer-compatible crystal displays. Angles are measured in degrees, minutes and seconds, e.g. $165^\circ 53' 30''$.

Direct reading micrometer scale

Application - at least two sightings are taken and the readings averaged. After the first sighting, the horizontal plate is rotated through 180° and the scope is also rotated 180° through the vertical to return the instrument to its original alignment for the second reading. This process will move the vertical circle from right face to left face, or vice versa. It is important to note the readings against the facing - see below.

<table>
<thead>
<tr>
<th>station - target</th>
<th>left face</th>
<th>right face</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>$00^\circ 00' 00''$</td>
<td>$180^\circ 00' 30''$</td>
<td>$00^\circ 00' 15''$</td>
</tr>
<tr>
<td>A-C</td>
<td>$40^\circ 10' 10''$</td>
<td>$220^\circ 10' 30''$</td>
<td>$40^\circ 10' 20''$</td>
</tr>
</tbody>
</table>

Angle = $40^\circ 10' 05''$
Road Construction - within the context of building operations, roadworks usually consist of the construction of small estate roads, access roads and driveways together with temporary roads laid to define site circulation routes and/or provide a suitable surface for plant movements. The construction of roads can be considered under three headings:

1. Setting out (this and next two pages).
2. Earthworks (see page 165).
3. Paving Construction (see pages 165-167).

Setting Out Roads - this activity is usually carried out after the topsoil has been removed using the dimensions given on the layout drawing(s). The layout could include straight lengths, junctions, hammer heads, turning bays and intersecting curves.

Straight Road Lengths - these are usually set out from centre lines which have been established by traditional means.

Junctions and Hammer Heads -

Centre lines fixed by traditional methods. Tape hooked over pin at chainage zero and passed around chainage point pin at 8.750 then returned to chainage zero via the radius pin with a tape length of 29.875. Radius pin held tape length 17.500 and tape is moved until tight between all pins. Radius pin is driven and a 6.000 tape length is swung from the pin to trace out curve which is marked with pegs or pins.

\[
\text{Tape length} = 17.50 + \sqrt{2} \times 8.75 = 29.875
\]
Lane Width ~ established by assessment of the amount of traffic flow and speed restriction. For convenience of road users, the minimum width can be based on a vehicle width not exceeding 2.500m plus an allowance for clearance of at least 0.500m between vehicles. This will provide an overall dimension of 5.500m for two-way traffic. One-way traffic will require a lane width of at least 3.000m.

Road Junctions ~ drivers of vehicles approaching a junction from any direction should have a clear view of other road users. Unobstructed visibility is required within vertical sight lines, triangular on plan. These provide a distance and area within which other vehicles and pedestrians can be seen at specific heights above the carriageway. No street furniture, trees or other obstructions are permitted within these zones, as indicated in the diagram below and on the next page.

Vertical Sight Lines ~ vertical in height and horizontal or near horizontal for driver and pedestrian visibility. These clear sight lines are established between a driver’s eye height of between 1.050m and 2.000m to allow for varying vehicle heights, to an object height of between 0.600m and 2.000m over the horizontal plane.
Horizontal Sight Lines ~ these should be provided and maintained thereafter with a clear view, to prevent the possibility of danger from vehicle drivers having obstructed outlook when approaching junctions. The recommended dimensions vary relative to the category of road classification and the speed restriction.

Guidance for dimensions A and B ~

<table>
<thead>
<tr>
<th>Type of road</th>
<th>Min. dimension A (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to a single dwelling or a small development of about half-a-dozen units</td>
<td>2.0</td>
</tr>
<tr>
<td>Minor road junctions within developed areas</td>
<td>2.4</td>
</tr>
<tr>
<td>Minor road junctions at local distributor roads</td>
<td>4.5</td>
</tr>
<tr>
<td>Busy minor road junctions, access roads, district or local distributor roads and other major junctions</td>
<td>9.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed restriction mph (kph)</th>
<th>Min. major road dimension B (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 (32)</td>
<td>45</td>
</tr>
<tr>
<td>30 (48)</td>
<td>90</td>
</tr>
<tr>
<td>40 (64)</td>
<td>120</td>
</tr>
<tr>
<td>50 (80)</td>
<td>160</td>
</tr>
<tr>
<td>60 (90)</td>
<td>215</td>
</tr>
<tr>
<td>70 (112)</td>
<td>295</td>
</tr>
</tbody>
</table>

Earthworks ~ this will involve the removal of topsoil together with any vegetation, scraping and grading the required area down to formation level plus the formation of any cuttings or embankments. Suitable plant for these operations would be tractor shovels fitted with a 4 in 1 bucket (page 208): graders (page 207) and bulldozers (page 205). The soil immediately below the formation level is called the subgrade whose strength will generally decrease as its moisture content rises: therefore if it is to be left exposed for any length of time protection may be required. Subgrade protection may take the form of a covering of medium-gauge plastic sheeting with generous overlaps. To preserve the strength and durability of the subgrade it may be necessary to install cut off subsoil drains alongside the proposed road (see Road Drainage on page 876).

Paving Construction ~ once the subgrade has been prepared and any drainage or other buried services installed the construction of the paving can be undertaken. Paved surfaces can be either flexible or rigid in format. Flexible or bound surfaces are formed of materials applied in layers directly over the subgrade whereas rigid pavings consist of a concrete slab resting on a granular base (see pages 166 and 167).

Typical Flexible Paving Details ~

- **surfacing = base layer + wearing course**
 - 60mm thick base course of dense bitumen macadam or asphalt laid to form the crossovertalls and/or gradients
 - wearing course of coated macadam or asphalt having good non-ski properties; reasonable resistance to glare and an acceptable life - should be laid within three days of base layer

- sub-base of crushed stone or dry lean mix concrete (1:15) laid in 100 to 150mm thick compacted layers - total thickness related to loading and subgrade strength

- NB. no road joints required
Rigid Pavings - these consist of a reinforced or unreinforced in-situ concrete slab laid over a base course of crushed stone or similar material which has been blinded to receive a polythene sheet slip membrane. The primary objective of this membrane is to prevent grout loss from the in-situ slab.

The paving can be laid between metal road forms or timber edge formwork. Alternatively the kerb stones could be laid first to act as permanent formwork.

Typical Rigid Paving Details:

- 40 to 80mm end cover
- Welded fabric asphalt or similar topping if required
- 50 to 60mm cover
- In-situ concrete paving slab - depth to design
- Polythene sheet slip membrane
- 80mm-thick crushed stone blinded base layer

Stop for sliding plate

Housing for sliding plate

25mm diameter x 600mm long steel fixing stake

5 or 6mm thick pressed steel standard road form

Standard road form length 3.000

3 No. fixing stakes

5 No. fixing stakes

Fixed stake housing

Flexible road form

Standard road form

100 to 250

100 to 250
Joints in Rigid Pavings — longitudinal and transverse joints are required in rigid pavings to:

1. Limit size of slab.
2. Limit stresses due to subgrade restraint.
3. Provide for expansion and contraction movements.

The main joints used are classified as expansion, contraction or longitudinal, the latter being the same in detail as the contraction joint differing only in direction. The spacing of road joints is determined by:

1. Slab thickness.
2. Whether slab is reinforced or unreinforced.
3. Anticipated traffic load and flow rate.
4. Temperature at which concrete is laid.

Typical Road Joint Spacings —

- 36,000 to 72,000 — reinforced
- 24,000 to 54,000 — unreinforced

Typical Road Joint Details —

- Reinforcement stopped short of joints
- Concrete slab over 125mm granular base
- 20 x 25mm thick mastic
- 20mm wide compressible material
- 20mm dia. x 500 long dowel bars at 300% half coated with bitumen and fitted with plastic compression cap
- 16mm dia. x 400 long half coated dowel bars at 300%
Typical Examples~

- **FLEXIBLE PAVING**
 - 150 x 50 pcc edging
 - 200 x 100 concrete foundation
 - 40mm thick base course of 25mm coated macadam
 - 100mm blinded and consolidated hardcore

- **RIGID PAVING**
 - 75mm thick plain in-situ concrete with contraction joints at 3,000 max. c/c and expansion joints at 27,000 max. c/c
 - 600 x 600 x 50 pcc flags laid with butt joints filled with 13 c/s mortar

- **PAVING FLAGS OR SLABS**
 - 150 x 50 edging
 - 200 x 100 concrete foundation
 - 25mm thick 1:4 dry cement/sand bed
 - 75mm consolidated hardcore
 - 60mm thick pcc plain or interlocking paving blocks vibrated into bed with sand filled joints

- **SMALL UNIT PAVINGS**
 - 100mm consolidated hardcore
 - 50mm thick bed of sharp sand

All pavings should be laid to a minimum fall of 1:60 to drain to one or both sides and have a minimum footpath width of 1.200

Refs.:
- BS EN 1340: Concrete kerb units.
Available sections — manufactured in 915mm lengths from silver/grey aggregate concrete.

KERBS

splay -121° to 15°

\[r = 16 \text{ to } 19 \text{ mm radius} \]

Half battered

<table>
<thead>
<tr>
<th>size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 150 150 255 305</td>
</tr>
<tr>
<td>B 125 150 125 150</td>
</tr>
<tr>
<td>C 50 50 155 205</td>
</tr>
</tbody>
</table>

Bullnose

\[\theta = 45^\circ \]

<table>
<thead>
<tr>
<th>size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 150 150 255 305</td>
</tr>
<tr>
<td>B 125 125 150</td>
</tr>
<tr>
<td>C 75 180 230</td>
</tr>
<tr>
<td>D 50 50 75</td>
</tr>
</tbody>
</table>

CHANNELS

dish

bullnose (optional)

<table>
<thead>
<tr>
<th>square</th>
<th>dished</th>
<th>bullnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(mm)</td>
<td>125 150 150</td>
<td>125 150 90 125 75</td>
</tr>
<tr>
<td>B(mm)</td>
<td>255 230 150</td>
<td>150 305 305 255 230</td>
</tr>
</tbody>
</table>

EDGINGS

Round 150/200/250 × 50 mm

Flat 150/200/250 × 50 mm

Bullnose 150/200 × 50 mm

Chamfer 178 × 63 mm

*denotes BS sections

NB. Further components such as drop/tapered kerbs are available for vehicle accesses. Quadrants and angles provide for directional change.
Concrete paving flags – BS dimensions:

<table>
<thead>
<tr>
<th>Type</th>
<th>Size (nominal)</th>
<th>Size (work)</th>
<th>Thickness (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – plain</td>
<td>600 × 450</td>
<td>598 × 448</td>
<td>50 or 63</td>
</tr>
<tr>
<td>B – plain</td>
<td>600 × 600</td>
<td>598 × 598</td>
<td>50 or 63</td>
</tr>
<tr>
<td>C – plain</td>
<td>600 × 750</td>
<td>598 × 748</td>
<td>50 or 63</td>
</tr>
<tr>
<td>D – plain</td>
<td>600 × 900</td>
<td>598 × 898</td>
<td>50 or 63</td>
</tr>
<tr>
<td>E – plain</td>
<td>450 × 450</td>
<td>448 × 448</td>
<td>50 or 70</td>
</tr>
<tr>
<td>TA/E – tactile</td>
<td>450 × 450</td>
<td>448 × 448</td>
<td>50 or 70</td>
</tr>
<tr>
<td>TA/F – tactile</td>
<td>400 × 400</td>
<td>398 × 398</td>
<td>50 or 65</td>
</tr>
<tr>
<td>TA/G – tactile</td>
<td>300 × 300</td>
<td>298 × 298</td>
<td>50 or 60</td>
</tr>
</tbody>
</table>

Note: All dimensions in millimetres.

Tactile flags – manufactured with a blistered (shown) or ribbed surface. Used in walkways to provide warning of hazards or to enable recognition of locations for people whose visibility is impaired. See also Department of Transport Disability Circular DU 1/86[1], for uses and applications.

Ref. BS EN 1339: Concrete paving flags. Requirements and test methods.
Landscaping ~ in the context of building works this would involve reinstatement of the site as a preparation to the landscaping in the form of lawns, paths, pavings, flower and shrub beds and tree planting. The actual planning, lawn laying and planting activities are normally undertaken by a landscape subcontractor. The main contractor’s work would involve clearing away all waste and unwanted materials, breaking up and levelling surface areas, removing all unwanted vegetation, preparing the subsoil for and spreading topsoil to a depth of at least 150mm.

Services ~ the actual position and laying of services is the responsibility of the various service boards and undertakings. The best method is to use the common trench approach; avoid as far as practicable laying services under the highway.

Typical Common Trench Details ~

trench backfilled with selected granular material in 200mm thick compacted layers

Road Signs ~ these can range from markings painted on roads to define traffic lanes, rights of way and warnings of hazards to signs mounted above the road level to give information, warning or directives, the latter being obligatory. See also. pages 56 and 57

Typical Examples ~

[Diagram showing various road signs and symbols]
Scaffolds ~ temporary platforms to provide a safe working place at a convenient height. Usually required when the working height is 1.500 or more above ground level.

Component Parts of a Tubular Scaffold ~

References:
BS EN 39: Loose steel tubes for tube and coupler scaffolds.
BS EN 12811-1: Temporary equipment. Scaffolds. Performance requirements and general design.
Work at Height Regulations.
Putlog Scaffolds — these are scaffolds which have an outer row of standards joined together by ledgers which in turn support the transverse putlogs which are built into the bed joints or perpends as the work proceeds; they are therefore only suitable for new work in bricks or blocks.

Typical Details ~

- **wall under construction**
- **boarded working platform — see page 175**
- **blade end built into wall**
- **100mm wide gap for plumb rule**
- **putlog coupler**
- **putlog**
- **ledger**
- **ladder secured top and bottom to terminate at least 1.050 above working platform**
- **standards at 2.000 centres**
- **pitch 75° or ‘4 up 1 out’**
- **base plate**
- **sole plate**
- **guard rail**
- **wire mesh brick guard**
- **intermediate guard rail**
- **toe board clip**
- **toe board**

Tubular Scaffolding
Independent Scaffolds ~ these are scaffolds which have two rows of standards, each row joined together with ledgers which in turn support the transverse transoms. The scaffold is erected clear of the existing or proposed building but is tied to the building or structure at suitable intervals - see page 176.

Tubular Scaffolding
Working Platforms ~ these are close-boarded or plated level surfaces at a height at which work is being carried out and they must provide a safe working place of sufficient strength to support the imposed loads of operatives and/or materials. All working platforms above ground level must be fitted with a toe board and a guard rail.

Typical Details ~
- 150mm minimum
- 25mm wide × 0.9mm thick galvanized hoop iron binding to both ends to prevent splitting
- 225mm wide × 38mm thick × 3.900 long softwood standard scaffold board
- Maximum overhang 4 × board thickness
- Bevelled piece at board overlap

Transom or putlog boards to be evenly supported on at least three supports per board length

SCAFFOLD BOARDS FOR WORKING PLATFORMS
- Inner row of standards
- Guard rail
- Deposited material
- Toe board clips
- Toe board
- Transom
- Working platform
Tying-in ~ all putlog and independent scaffolds should be tied securely to the building or structure at alternate lift heights vertically and at not more than 6,000 centres horizontally. Putlogs should not be classified as ties.

Suitable tying-in methods include connecting to tubes fitted between sides of window openings or to internal tubes fitted across window openings; the former method should not be used for more than 50% of the total number of ties. If there is an insufficient number of window openings for the required number of ties external rakers should be used.

Typical Details ~

reinforced polythene protective sheeting tied to scaffold

strut (could be horizontal)

transom

ledgers

reveal pin

standards

protection sheeting

tube against inner face of wall (could be horizontal)

for putlog scaffolds a horizontal bridle across window opening to support putlog ends may be required

transom

ledgers

standards
Mobile Scaffolds ~ otherwise known as mobile tower scaffolds. They can be assembled from preformed framing components or from standard scaffold tube and fittings. Used mainly for property maintenance. Must not be moved whilst occupied by persons or equipment.

Typical detail ~

125mm min. diameter castor wheels with integral brake and locking device fixed to corner standards.

Ladder Access:
Inclined within the tower to hinged access door in platform. Secured to tower so as not to foul the ground. Lowest rung max. 400mm above the ground.
Some basic fittings ~

Swivel coupler
- swing-over bolt
- swivel joint
- scaffold tube
- tube clamp

Double coupler
- swing-over bolt
- tube clamp
- scaffold tube

Wrapover putlog coupler
- swing-over bolt
- tube clamp

Putlog end
- putlog tube
- swing-over bolt
- blade

Split joint pin
- bolt
- scaffold tube
- split sections

Reveal pin
- scaffold tube
- circular nut with "podger" recess
- face plate

Base plate
- scaffold tube over circular spigot welded to 150mm square plate

Tubular Scaffolding
Patent Scaffolding – these are systems based on an independent scaffold format in which the members are connected together using an integral locking device instead of conventional clips and couplers used with traditional tubular scaffolding. They have the advantages of being easy to assemble and take down using semi-skilled labour and should automatically comply with the requirements set out in the Work at Height Regulations 2005. Generally cross bracing is not required with these systems but façade bracing can be fitted if necessary. Although simple in concept patent systems of scaffolding can lack the flexibility of traditional tubular scaffolds in complex layout situations.
Scaffolding Systems ~ these are temporary stagings to provide safe access to and egress from a working platform. The traditional putlog and independent scaffolds have been covered on pages 172 to 176 inclusive. The minimum design, safety, inspection and performance requirements applicable to traditional scaffolds apply equally to special scaffolds. Special scaffolds are designed to fulfil a specific function or to provide access to areas where it is not possible and/or economic to use traditional formats. They can be constructed from standard tubes or patent systems; the latter complying with most regulation requirements are easy and quick to assemble but lack the complete flexibility of the traditional tubular scaffolds.

Birdcage Scaffolds ~ these are a form of independent scaffold normally used for internal work in large buildings such as public halls and churches to provide access to ceilings and soffits for light maintenance work like painting and cleaning. They consist of parallel rows of standards connected by leaders in both directions, the whole arrangement being firmly braced in all directions. The whole birdcage scaffold assembly is designed to support a single working platform which should be double planked or underlined with polythene or similar sheeting as a means of restricting the amount of dust reaching the floor level.

Slung Scaffolds ~ these are a form of scaffold which is suspended from the main structure by means of wire ropes or steel chains and is not provided with a means of being raised or lowered. Each working platform of a slung scaffold consists of a supporting framework of ledgers and transoms which should not create a plan size in excess of 2.500 x 2.500 and be held in position by not less than six evenly spaced wire ropes or steel chains securely anchored at both ends. The working platform should be double planked or underlined with polythene or similar sheeting to restrict the amount of dust reaching the floor level. Slung scaffolds are an alternative to birdcage scaffolds and although more difficult to erect have the advantage of leaving a clear space beneath the working platform which makes them suitable for cinemas, theatres and high-ceilinged banking halls.
Suspended Scaffolds — these consist of a working platform in the form of a cradle which is suspended from cantilever beams or outriggers from the roof of a tall building to give access to the facade for carrying out light maintenance work and cleaning activities. The cradles can have manual or power control and be in single units or grouped together to form a continuous working platform. If grouped together they are connected to one another at their abutment ends with hinges to form a gap of not more than 25mm wide. Many high-rise buildings have a permanent cradle system installed at roof level and this is recommended for all buildings over 30,000 high.

Typical Example —

outriggers or cantilever beams of steel, timber or framed scaffold tubes

hoist and safety ropes

rope sheaves with safety device to prevent overspeeding

cradle arms

control box

motor

power cable

counterweights

balance is achieved when kentledge × tail length = cradle load × cantilever but for safety kentledge × tail length = at least 3 (cradle load × cantilever) unless outriggers are securely bolted to roof structure to prevent overturning

900mm wide × 2.400 long power operated cradle
Cantilever Scaffolds — these are a form of independent tied scaffold erected on cantilever beams and used where it is impracticable, undesirable or uneconomic to use a traditional scaffold raised from ground level. The assembly of a cantilever scaffold requires special skills and should therefore always be carried out by trained and experienced personnel.

Typical Example —

- head plates
- transom
- ledgers
- two rows of props
- sole plates
- guard rail
- toe board
- working platform
- outer row of standards at 2,000 %
- transom
- ledgers
- cross bracing
- inner row of standards at 2,000 %
- inverted forkheads
- timber or steel cantilever beams
- façade bracing to be used as required
Truss-out Scaffold — this is a form of independent tied scaffold used where it is impracticable, undesirable or uneconomic to build a scaffold from ground level. The supporting scaffold structure is known as the truss-out. The assembly of this form of scaffold requires special skills and should therefore be carried out by trained and experienced personnel.

Typical Example ~

- **300 maximum**
- **800 minimum**
- **950 minimum**
- **470 max. gap**
- **150 min.**
- **1,350 to 1,500**

- **head plate**
- **transom**
- **ledger**
- **one or two rows of props**
- **sole plate**
- **head plate**
- **transom**
- **ledger**
- **one or two rows of props**
- **sole plate**
- **guard rail**
- **toe board**
- **working platform**
- **cross bracing**
- **inner row of standards at 2:000 %**
- **not more than 35°**
- **raker or outrigger**
- **façade bracing to be used as required**

- **outer row of standards at 2:000 %**
Gantries - these are elevated platforms used when the building being maintained or under construction is adjacent to a public footpath. A gantry over a footpath can be used for storage of materials, housing units of accommodation and supporting an independent scaffold. Local authority permission will be required before a gantry can be erected and they have the power to set out the conditions regarding minimum sizes to be used for public walkways and lighting requirements. It may also be necessary to comply with police restrictions regarding the loading and unloading of vehicles at the gantry position. A gantry can be constructed of any suitable structural material and may need to be structurally designed to meet all the necessary safety requirements.

Typical Example -

- independent tubular or patent scaffold
- timber-boarded working platform underlined with polythene or similar sheeting supported on timber joists - spacing and size to design
- close-boarded guard rail or fence to all open sides of gantry
- night warning lights to suit local authority requirements
- structural steel support columns - spacing and size to design
- structural steel cross and longitudinal beams to design
- boarded walkway on joists with approach ramps
- warning lights
- 300 x 300 timber tenter painted white and fixed with straps to columns
Principle Considerations ~

- Structural stability and integrity.
- Safety of personnel using a scaffold and for those in the vicinity.

Relevant Factors ~

- Simple configurations of putlog and independent scaffold, otherwise known as basic systems (see National Access and Scaffolding Confederation [NASC] technical guidance) do not require specific design calculations. Structural calculations are to be prepared by an appropriately qualified person for other applications.
- Assembly, alterations and dismantling to be undertaken in accordance with NASC technical guidance or system scaffolding manufacturer’s instructions.
- Scaffold erectors to be competence qualified, e.g. having attended a Construction Industry Scaffolders Registration Scheme (CISRS) course and be in possession of a scaffolder’s card. Trainees to be supervised by a competent qualified person, e.g. foreman scaffolder.
- Non-basic scaffolds should have a sequence and methodology for assembly and dismantling, plus further guidance for any anticipated alterations included with the design information. Any unforeseen alterations should receive specific design consideration.
- On completion, the scaffold supplier should provide a ‘handover certificate’ endorsed with references to design drawings and calculations. Any limitations of use, with particular mention of platform safe working loads, to be documented.
- Completed scaffolds to be inspected by a competent person, i.e. suitably qualified by experience and training. The latter assessed by the CISRS or by certificated attendance on a system scaffold manufacturer’s course. This does not apply to basic systems mentioned in the first bullet point. These can be approved by a person of sufficient site experience such as a site manager.
- Inspection reports to be undertaken daily before work commences, after adverse weather and when alterations, modifications or additions are made. Any defects noted and corrective action taken.
- Incomplete scaffolds should be suitably signed for non-access. Physical barriers to be in place during assembly and dismantling.
- Inspection records to be documented and filed. These to include location and description of the scaffold, time and date of inspection, result of inspection and any actions taken. The report to be authorised by signature and endorsed with the inspector’s job title.
Shoring ~ this is a form of temporary support which can be given to existing buildings with the primary function of providing the necessary precautions to avoid damage to any person or property from collapse of the supported structure.

Shoring Systems ~ there are three basic systems of shoring which can be used separately or in combination with one another to provide the support(s), namely:

1. Dead Shoring ~ used primarily to carry vertical loadings.
2. Raking Shoring ~ used to support a combination of vertical and horizontal loadings.
3. Flying Shoring ~ an alternative to raking shoring to give a clear working space at ground level.

Typical Shoring Situations ~

- **Dead Shore** (page 187)
- **Raking Shore** (page 188)
- **Flying Shore** (pages 189 to 191)
Dead Shores ~ these shores should be placed at approximately 2:000 c/c and positioned under the piers between the windows, any windows in the vicinity of the shores being strutted to prevent distortion of the openings. A survey should be carried out to establish the location of any underground services so that they can be protected as necessary. The sizes shown in the detail below are typical; actual sizes should be obtained from tables or calculated from first principles. Any suitable structural material such as steel can be substituted for the timber members shown.
Raking Shoring ~ these are placed at 3-000 to 4-500 c/c and can be of single, double, triple or multiple raker format. Suitable materials are timber, structural steel and framed tubular scaffolding.

Typical Multiple Raking Shore Detail ~

- 250 x 75 wall plate secured with w.i. wall hooks
- 100 x 100 x 200 cleat
- 100 x 150 x 400 needle
- 250 x 250 rider
- 225 x 50 binding to both sides
- halving joint in running length

DETAIL AT HEAD OF RAKER

- 250 x 250 top raking shore
- 250 x 250 middle raking shore
- 225 x 50 binding to both sides
- folding wedges
- 250 x 250 bottom raking shore
- 225 x 50 binding to both sides
- 250 x 250 back shore
- 250 x 100 sole plate

grillage or platform out of 200 x 100 timbers

minimum angle for rakers 40°
maximum angle for rakers 70°
angle between top shore and sole plate 89°
Flying Shores — these are placed at 3,000 to 4,500 c/c and can be of a single or double format. They are designed, detailed and constructed to the same basic principles as that shown for raking shores on page 188. Unsymmetrical arrangements are possible providing the basic principles for flying shores are applied – see page 191.

Typical Single Flying Shore Detail ~

250 x 75 wall plate secured with w.i. wall hooks
100 x 100 x 200 cleat
100 x 150 x 400 needle
150 x 150 raking strut
folding wedges
folding wedges
folding wedges
150 x 75 straining sill
w.i. dogs
20mm diameter bolts at 600 c/c
raking strut
raking strut
raking strut
folding wedges

spans up to 9,000
Unsymmetrical Flying Shores — arrangements of flying shores for unsymmetrical situations can be devised if the basic principles for symmetrical shores is applied (see page 189). In some cases the arrangement will consist of a combination of both raking and flying shore principles.
Temporary Support Determination — the basic sizing of most temporary supports follows the principles of elementary structural design. Readers with this basic knowledge should be able to calculate such support members which are required, particularly those used in the context of the maintenance and adaptation of buildings such as a dead shoring system.

Typical Example

![Diagram of a typical example showing the calculation of rafter length and loadings.]

<table>
<thead>
<tr>
<th>Rafter length: $\cos 35^\circ = \frac{3.7}{x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = \frac{3.7}{\cos 35^\circ} = \frac{3.7}{0.8192} = 4.520$</td>
</tr>
</tbody>
</table>

Loadings:

<table>
<thead>
<tr>
<th>Component</th>
<th>kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof -</td>
<td></td>
</tr>
<tr>
<td>tiles</td>
<td>71.0</td>
</tr>
<tr>
<td>battens</td>
<td>3.4</td>
</tr>
<tr>
<td>felt</td>
<td>2.0</td>
</tr>
<tr>
<td>rafters</td>
<td>7.5</td>
</tr>
<tr>
<td>say 84.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Ceiling -</td>
<td></td>
</tr>
<tr>
<td>joists</td>
<td>7.5</td>
</tr>
<tr>
<td>finishes</td>
<td>15.0</td>
</tr>
<tr>
<td>say 23.0 kg/m²</td>
<td></td>
</tr>
<tr>
<td>Wall -</td>
<td></td>
</tr>
<tr>
<td>brickwork</td>
<td>490.0</td>
</tr>
<tr>
<td>plaster finish</td>
<td>6.8</td>
</tr>
<tr>
<td>say 500.0 kg/m²</td>
<td></td>
</tr>
</tbody>
</table>

Weight of roof per metre run of wall = 84 × 4.520 = 379.68 kg

Weight of ceiling per metre run of wall = 23 × 3.70 = 85.10 kg

Weight of wall per metre run of wall = 500 × 3.00 = 1500.00 kg

Total weight of wall per metre run = 1964.78 kg

Total weight supported by needle = 1964.78 × shore centres = 3929.56 kg

For design calculations see pages 193 to 194.

Note 1: Typical weights of building materials, pages 38 to 39.

Note 2: Effective span (3.000 c/c) is often preferred to clear span for design of flexural members.
Design calculations reference previous page.

Timber strength class C22. See page 142 for data.

Needle Design:

\[W = 3930 \text{ kg} \]

\[\text{hence force} = 3930 \times 9.81 = 39300 \text{ N} \]

\[R_A = R_B = \frac{W}{2} = \frac{39300}{2} = 19650 \text{ N} \]

\[BM = \frac{WL}{4} = \frac{39300 \times 3000}{4} = 29475000 \text{ Nmm} \]

\[MR = \text{stress} \times \text{section modulus} = fZ = f \frac{bd^2}{6} \]

assume \(b = 300 \text{ mm} \) and \(f = 6.8 \text{ N/mm}^2 \)

then \(29475000 = \frac{6.8 \times 300 \times d^2}{6} \)

\[d = \sqrt{\frac{29475000 \times 6}{6.8 \times 300}} = 294 \text{ mm} \]

use \(300 \times 300 \) timber section or 2 No. \(150 \times 300 \) sections bolted together with timber connectors.

Props to Needle Design:

\[\text{area} = \frac{\text{load}}{\text{stress}} = \frac{19650}{7.5} = 2620 \text{ mm}^2 \]

\(\therefore \) minimum timber size = \(\sqrt{2620} = 52 \times 52 \text{ mm} \)

check slenderness ratio:

\[\text{slenderness ratio} = \frac{\text{effective length}}{\text{breadth}} = \frac{4500}{52} = 86.5 \]

the \(52 \times 52 \text{ mm} \) section is impractically small with a very high slenderness ratio. therefore a more stable section of say \(300 \times 225 \text{ mm} \) would be selected giving a slenderness ratio of \(4500/225 = 20 \) (stability check, next page)

Check crushing at point of loading on needle:

wall loading on needle = \(3930 \text{ kg} = 39300 \text{ N} = 39.3 \text{kN} \)

area of contact = width of wall \(\times \) width of needle

\[= 215 \times 300 = 64500 \text{ mm}^2 \]

safe compressive stress perpendicular to grain = \(2.3 \text{ N/mm}^2 \)

\(\therefore \) safe load = \(\frac{64500 \times 2.3}{1000} = 148.3 \text{kN} \) which is > 39.3 kN
Stability check using the example from previous page ~

Timber of strength classification C22 (see page 142):

Modulus of elasticity, 6500N/mm² minimum.

Grade stress in compression parallel to the grain, 7.5N/mm².

Grade stress ratio = 6500 ÷ 7.5 = 867

The grade stress and slenderness ratios are used to provide a modification factor for the compression parallel to the grain. The following table shows some of these factors:

<table>
<thead>
<tr>
<th>Grade stress ratio</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
<th>36</th>
<th>42</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.95</td>
<td>0.90</td>
<td>0.74</td>
<td>0.51</td>
<td>0.34</td>
<td>0.23</td>
<td>0.17</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td>600</td>
<td>0.95</td>
<td>0.90</td>
<td>0.77</td>
<td>0.58</td>
<td>0.41</td>
<td>0.29</td>
<td>0.21</td>
<td>0.16</td>
<td>0.13</td>
</tr>
<tr>
<td>800</td>
<td>0.95</td>
<td>0.90</td>
<td>0.78</td>
<td>0.63</td>
<td>0.48</td>
<td>0.36</td>
<td>0.26</td>
<td>0.21</td>
<td>0.16</td>
</tr>
<tr>
<td>1000</td>
<td>0.95</td>
<td>0.90</td>
<td>0.79</td>
<td>0.66</td>
<td>0.52</td>
<td>0.41</td>
<td>0.30</td>
<td>0.24</td>
<td>0.19</td>
</tr>
<tr>
<td>1200</td>
<td>0.95</td>
<td>0.90</td>
<td>0.80</td>
<td>0.68</td>
<td>0.56</td>
<td>0.44</td>
<td>0.34</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>1400</td>
<td>0.95</td>
<td>0.90</td>
<td>0.80</td>
<td>0.69</td>
<td>0.58</td>
<td>0.47</td>
<td>0.37</td>
<td>0.30</td>
<td>0.24</td>
</tr>
<tr>
<td>1600</td>
<td>0.95</td>
<td>0.90</td>
<td>0.81</td>
<td>0.70</td>
<td>0.60</td>
<td>0.49</td>
<td>0.40</td>
<td>0.32</td>
<td>0.27</td>
</tr>
<tr>
<td>1800</td>
<td>0.95</td>
<td>0.90</td>
<td>0.81</td>
<td>0.71</td>
<td>0.61</td>
<td>0.51</td>
<td>0.42</td>
<td>0.34</td>
<td>0.29</td>
</tr>
<tr>
<td>2000</td>
<td>0.95</td>
<td>0.90</td>
<td>0.81</td>
<td>0.71</td>
<td>0.62</td>
<td>0.52</td>
<td>0.44</td>
<td>0.36</td>
<td>0.31</td>
</tr>
</tbody>
</table>

By interpolation, a grade stress of 867 and a slenderness ratio of 20 indicates that 7.5N/mm² is multiplied by 0.57.

Applied stress should be ≤7.5 × 0.57 = 4.275 N/mm².

Applied stress = axial load ÷ prop section area

= 19650N ÷ (300 × 225mm) = 0.291 N/mm²

0.291N/mm² is well within the allowable stress of 4.275 N/mm², therefore 300 × 225mm props are satisfactory.

Town and Country Planning Act ~ demolition is generally not regarded
as development, but planning permission will be required if the site is to
have a change of use. Attitudes to demolition can vary between local
planning authorities and consultation should be sought.

Planning (Listed Buildings and Conservation Areas) Act ~ listed
buildings and those in conservation areas will require local
authority approval for any alterations. Consent for change may be
limited to partial demolition, particularly where it is necessary to
preserve a building frontage for historic reasons. See the
arrangements for temporary shoring on the preceding pages.

Building Act ~ intention to demolish a building requires six weeks’
written notice of intent. The next page shows the typical outline of
a standard form for submission to the building control department
of the local authority, along with location plans. Notice must also
be given to utilities providers and adjoining/adjacent building
owners, particularly where party walls are involved. Small buildings
of volumes less than 50m³ are generally exempt. Within six weeks
of the notice being submitted, the local authority will specify their
requirements for shoring, protection of adjacent buildings, debris
disposal and general safety requirements under the HSE.

Public Health Act ~ the local authority can issue a demolition
enforcement order to a building owner, where a building is
considered to be insecure, a danger to the general public and
detrimental to amenities.

Highways Act ~ concerns the protection of the general public using
a thoroughfare in or near to an area affected by demolition work.
The building owner and demolition contractor are required to
ensure that debris and other materials are not deposited in the
street unless in a suitable receptacle (skip) and the local authority
highways department and police are in agreement with its location.
Temporary road-works require protective fencing and site hoardings
must be robust and secure. All supplementary provisions such as
hoardings and skips may also require adequate illumination.
Provision must be made for immediate removal of poisonous and
hazardous waste.
Demolition – Notice

Anytown Borough Council
Building Control Section
Anytown
UK

Tel:
Fax:
Email:

NOTICE TO LOCAL AUTHORITY TO CARRY OUT DEMOLITION WORKS

THE BUILDING ACT 1984 – SECTION 80

It is my intention to commence demolition of:

...
...
...
...
As shown on the attached site plan, on the (date)

This date is at least six weeks from the date of this notice. Under section 81 of the Building Act, I anticipate your notification within six weeks.

Copies of this notice have been sent to:

• The occupants/owners of any/all buildings adjacent to the proposed demolition.
• The public services/utilities supply companies.

Signed .. Date

Company name and address ...
...
...
Demolition ~ skilled and potentially dangerous work that should only be undertaken by experienced contractors.

Types of demolition ~ partial or complete removal. Partial is less dynamic than complete removal, requiring temporary support to the remaining structure. This may involve window strutting, floor props and shoring. The execution of work is likely to be limited to manual handling with minimal use of powered equipment.

Preliminaries ~ a detailed survey should include:

- an assessment of condition of the structure and the impact of removing parts on the remainder.
- the effect demolition will have on adjacent properties.
- photographic records, particularly of any noticeable defects on adjacent buildings.
- neighbourhood impact, i.e. disruption, disturbance, protection.
- the need for hoardings, see pages 113 to 117.
- potential for salvaging/recycling/reuse of materials.
- extent of basements and tunnels.
- services - need to terminate and protect for future reconnections.
- means for selective removal of hazardous materials.

Insurance ~ general builders are unlikely to find demolition cover in their standard policies. All risks indemnity should be considered to cover claims from site personnel and others accessing the site. Additional third party cover will be required for claims for loss or damage to other property, occupied areas, business, utilities, private and public roads.

Salvage ~ salvaged materials and components can be valuable: bricks, tiles, slates, steel sections and timber are all marketable. Architectural features such as fireplaces and stairs will command a good price. Reclamation costs will be balanced against the financial gain.

Asbestos ~ this banned material has been used in a variety of applications including pipe insulation, fire protection, sheet claddings, linings and roofing. Samples should be taken for laboratory analysis and if necessary, specialist contractors engaged to remove material before demolition commences.
Generally ~ the reverse order of construction to gradually reduce the height. Where space is not confined, overturning or explosives may be considered.

Piecemeal ~ use of handheld equipment such as pneumatic breakers, oxy-acetylene cutters, picks and hammers. Care should be taken when salvaging materials and other reusable components. Chutes should be used to direct debris to a suitable place of collection (see page 220).

Pusher Arm ~ usually attached to a long reach articulated boom fitted to a tracked chassis. Hydraulic movement is controlled from a robust cab structure mounted above the tracks.

Wrecking Ball ~ largely confined to history, as even with safety features such as anti-spin devices, limited control over a heavy weight swinging and slewing from a crane jib will be considered unsafe in many situations.

Impact Hammer ~ otherwise known as a `pecker'. Basically a large chisel operated by pneumatic power and fitted to the end of an articulated boom on a tracked chassis.

Nibbler ~ a hydraulically operated grip fitted as above that can be rotated to break brittle materials such as concrete.

Overturning ~ steel wire ropes of at least 38 mm diameter attached at high level and to an anchored winch or heavy vehicle. May be considered where controlled collapse is encouraged by initial removal of key elements of structure, typical of steel framed buildings. Alternative methods should be given preference.

Explosives ~ demolition is specialised work and the use of explosives in demolition is a further specialised practice limited to very few licensed operators. Charges are set to fire in a sequence that weakens the building to a controlled internal collapse.

Some additional references ~

BS 6187: Code of practice for full and partial demolition.
The Construction (Design and Management) Regulations.
The Management of Health and Safety at Work Regulations.
Concept ~ to reduce waste by designing for deconstruction.

Linear (wasteful, non-sustainable) process ~

Closed-loop (near zero waste, sustainable) process ~

Reusable examples may include:

- Recycled concrete aggregate (RCA) and broken masonry for hardcore, backfill, landscaping, etc.
- Recovered: structural timber joists and joinery, architectural components/features, slates and tiles, structural steel standard sections.
This page intentionally left blank
3 BUILDERS PLANT

GENERAL CONSIDERATIONS
BULLDOZERS
SCRAPERS
GRADERS
TRACTOR SHOVELS
EXCAVATORS
TRANSPORT VEHICLES
HOISTS
RUBBLE CHUTES AND SKIPS
CRANES
CONCRETING PLANT
General Considerations ~ items of builders plant ranging from small handheld power tools to larger pieces of plant such as mechanical excavators and tower cranes can be considered for use for one or more of the following reasons:

1. Increased production.
2. Reduction in overall construction costs.
3. Carry out activities which cannot be carried out by the traditional manual methods in the context of economics.
4. Eliminate heavy manual work, thus reducing fatigue and as a consequence increasing productivity.
5. Replacing labour where there is a shortage of personnel with the necessary skills.
6. Maintain the high standards required, particularly in the context of structural engineering works.

Economic Considerations ~ the introduction of plant does not always result in economic savings since extra temporary site works such as road-works, hardstandings, foundations and anchorages may have to be provided at a cost which is in excess of the savings made by using the plant. The site layout and circulation may have to be planned around plant positions and movements rather than around personnel and material movements and accommodation. To be economic plant must be fully utilised and not left standing idle, since plant, whether hired or owned, will have to be paid for even if it is non-productive. Full utilisation of plant is usually considered to be in the region of 85% of on-site time, thus making an allowance for routine, daily and planned maintenance which needs to be carried out to avoid as far as practicable plant breakdowns which could disrupt the construction programme. Many pieces of plant work in conjunction with other items of plant such as excavators and their attendant haulage vehicles; therefore a correct balance of such plant items must be obtained to achieve an economic result.

Maintenance Considerations ~ on large contracts where a number of plant items are to be used it may be advantageous to employ a skilled mechanic to be on site to carry out all the necessary daily, preventive and planned maintenance tasks together with any running repairs which could be carried out on site.
Plant Costing — with the exception of small pieces of plant, which are usually purchased, items of plant can be bought or hired or where there are a number of similar items a combination of buying and hiring could be considered. The choice will be governed by economic factors and the possibility of using the plant on future sites, thus enabling the costs to be apportioned over several contracts.

Advantages of Hiring Plant:
1. Plant can be hired for short periods.
2. Repairs and replacements are usually the responsibility of the hire company.
3. Plant is returned to the hire company after use, thus relieving the building contractor of the problem of disposal or finding more work for the plant to justify its purchase or retention.
4. Plant can be hired with the operator, fuel and oil included in the hire rate.

Advantages of Buying Plant:
1. Plant availability is totally within the control of the contractor.
2. Hourly cost of plant is generally less than hired plant.
3. Owner has choice of costing method used.

Typical Costing Methods —

1. Straight Line — simple method

 Capital Cost = £100,000
 Anticipated life = 5 years
 Year’s working = 1500 hrs
 Resale or scrap value = £9,000
 Annual depreciation ~
 \[\frac{100,000 - 9,000}{5} = £18,200 \]
 Hourly depreciation ~
 \[\frac{18,200}{1,500} = 12.13 \]
 Add 2% insurance = 0.27
 10% maintenance = 1.33
 Hourly rate = £13.73

2. Interest on Capital Outlay — widely used more accurate method

 Capital Cost = £100,000
 C.I. on capital (8% for 5 yrs) = 46,930
 146,930
 Deduct resale value 9,000 137,930
 + Insurance at 2% = 2,000
 + Maintenance at 10% = 10,000
 149,930
 Hourly rate ~
 \[\frac{149,930}{5 \times 1500} = £20.00 \]
 NB. add to hourly rate running costs.
Output and Cycle Times ~ all items of plant have optimum output and cycle times which can be used as a basis for estimating anticipated productivity taking into account the task involved, task efficiency of the machine, operator's efficiency and in the case of excavators the type of soil. Data for the factors to be taken into consideration can be obtained from timed observations, feedback information or published tables contained in manufacturer's literature or reliable textbooks.

Typical Example ~

Backacter with 1m³ capacity bucket engaged in normal trench excavation in a clayey soil and discharging directly into an attendant haulage vehicle.

Optimum output = 60 bucket loads per hour
Task efficiency factor = 0.8 (from tables)
Operator efficiency factor = 75% (typical figure)
∴ Anticipated output = 60 x 0.8 x 0.75
= 36 bucket loads per hour
= 36 x 1 = 36 m³ per hour

An allowance should be made for the bulking or swell of the solid material due to the introduction of air or voids during the excavation process

∴ Net output allowing for a 30% swell = 36 - (36 x 0.3)
= say 25m³ per hr.

If the Bill of Quantities gives a total net excavation of 950m³
time required = \(\frac{950}{25} \) = 38 hours

or assuming an 8-hour day - 1/2 hour maintenance time in
days = \(\frac{38}{7.5} \) = say 5 days

Haulage vehicles required = 1 + \(\frac{\text{round trip time of vehicle}}{\text{loading time of vehicle}} \)

If round trip time = 30 min. and loading time = 10 min.
number of haulage vehicles required = 1 + \(\frac{30}{10} \) = 4

This gives a vehicle waiting overlap ensuring excavator is fully utilised which is economically desirable.
Bulldozers - these machines consist of a track or wheel mounted power unit with a mould blade at the front which is controlled by hydraulic rams. Many bulldozers have the capacity to adjust the mould blade to form an angledozer and the capacity to tilt the mould blade about a central swivel point. Some bulldozers can also be fitted with rear attachments such as rollers and scarifiers.

The main functions of a bulldozer are:

1. Shallow excavations up to 300 m deep either on level ground or sidehill cutting.
2. Clearance of shrubs and small trees.
3. Clearance of trees by using raised mould blade as a pusher arm.
4. Acting as a towing tractor.
5. Acting as a pusher to scraper machines (see next page).

NB. Bulldozers push earth in front of the mould blade with some side spillage whereas angledozers push and cast the spoil to one side of the mould blade.

Typical Bulldozer Details -

- Protective cab and roll bar
- Exhaust pipe
- Fuel tank
- Towing hook
- Steel track shoes
- 4 cylinder diesel engine
- Typical maximum speeds in km/h:
 - Forward gears - 11
 - Reverse gear - 7
- Mould blade with tilt and angle capacity - maximum digging depth 300 mm

NB. Protective cab/roll bar to be fitted before use.
Scrapers - these machines consist of a scraper bowl which is lowered to cut and collect soil where site stripping and levelling operations are required involving large volume of earth. When the scraper bowl is full the apron at the cutting edge is closed to retain the earth and the bowl is raised for travelling to the disposal area. On arrival the bowl is lowered, the apron opened and the spoil pushed out by the tailgate as the machine moves forward. Scrapers are available in three basic formats:

1. Towed Scrapers - these consist of a four-wheeled scraper bowl which is towed behind a power unit such as a crawler tractor. They tend to be slower than other forms of scraper but are useful for small capacities with haul distances up to 300 m.

2. Two axle Scrapers - these have a two-wheeled scraper bowl with an attached two-wheeled power unit. They are very manoeuvrable with a low rolling resistance and very good traction.

3. Three axle Scrapers - these consist of a two-wheeled scraper bowl which may have a rear engine to assist the four-wheeled traction engine which makes up the complement. Generally these machines have a greater capacity potential than their counterparts, are easier to control and have a faster cycle time.

To obtain maximum efficiency scrapers should operate downhill if possible, have smooth haul roads, hard surfaces broken up before scraping and be assisted over the last few metres by a pushing vehicle such as a bulldozer.

Typical Scraper Details -

- Scraper bowl
 - struck capacity 14 m³
 - heaped capacity 20 m³
- Width of cut 3.000
- Depth of cut 450 mm max.
- 8-cylinder diesel engine
- Attached power unit with a top forward speed of 45 km/h
- Front apron
- Pusher block for bulldozer
- Tailgate

NB. Protective cab/roll bar to be fitted before use.
Graders — these machines are similar in concept to bulldozers in that they have a long, slender, adjustable mould blade, which is usually slung under the centre of the machine. A grader's main function is to finish or grade the upper surface of a large area usually as a follow up operation to scraping or bulldozing. They can produce a fine and accurate finish but do not have the power of a bulldozer; therefore they are not suitable for over-site excavation work. The mould blade can be adjusted in both the horizontal and vertical planes through an angle of 300° the latter enabling it to be used for grading sloping banks.

Two basic formats of grader are available:

1. Four Wheeled — all wheels are driven and steered which gives the machine the ability to offset and crab along its direction of travel.
2. Six Wheeled — this machine has four wheels in tandem drive at the rear and two front-tilting idler wheels, giving it the ability to counteract side thrust.

Typical Grader Details —

- Driving cab
- Diesel engine
- Hydraulic rams
- Mould blade carriage
- Mould blade
- Tandem-drive rear wheels
- Maximum speeds: finishing - 10 km/h, banking - 6 km/h
- 4000 wide x 600 mm high mould board with a finishing tolerance capacity of ±5 mm

Cutting, shaping and grading banks
Tractor Shovels ~ these machines are sometimes called loaders or loader shovels and their primary function is to scoop up loose materials in the front-mounted bucket, elevate the bucket and manoeuvre into a position to deposit the loose material into an attendant transport vehicle. Tractor shovels are driven towards the pile of loose material with the bucket lowered; the speed and power of the machine will enable the bucket to be filled. Both tracked and wheeled versions are available, the tracked format being more suitable for wet and uneven ground conditions than the wheeled tractor shovel which has greater speed and manoeuvring capabilities. To increase their versatility tractor shovels can be fitted with a four-in-one bucket, enabling them to carry out bulldozing, excavating, clam lifting and loading activities.

Typical Tractor Shovel Details

- **maximum bucket lifting height**: 4.600
- **maximum bucket dumping clearance height**: 2.300
- **bucket front raised to reveal mould board section**: 1 m3 capacity 4 in 1 bucket
- **robust glazed cab with all-round vision**: exhaust, robust glazed cab with all-round vision
- **hydraulically controlled bucket arms**: 1 m3 capacity shovel bucket
- **maximum speeds**:
 - forward: 10 km/h
 - reverse: 9 km/h
- **fuel tank**: steel tracks
- **diesel engine**: exhaust, diesel engine
- **maximum bucket lifting height**: 3.400
- **maximum bucket dumping clearance height**: 2.750
- **tyred wheels**
Excavating Machines ~ these are one of the major items of builders plant and are used primarily to excavate and load most types of soil. Excavating machines come in a wide variety of designs and sizes but all of them can be placed within one of three categories:

1. Universal Excavators – this category covers most forms of excavators all of which have a common factor: the power unit. The universal power unit is a tracked based machine with a slewing capacity of 360° and by altering the boom arrangement and bucket type different excavating functions can be obtained. These machines are selected for high output requirements and are rope controlled.

2. Purpose Designed Excavators – these are machines which have been designed specifically to carry out one mode of excavation and they usually have smaller bucket capacities than universal excavators; they are hydraulically controlled with a shorter cycle time.

3. Multi-purpose Excavators – these machines can perform several excavating functions having both front and rear attachments. They are designed to carry out small excavation operations of low output quickly and efficiently. Multi-purpose excavators can be obtained with a wheeled or tracked base and are ideally suited for a small building firm with low excavation plant utilisation requirements.

Skimmers ~ these excavators are rigged using a universal power unit for surface stripping and shallow excavation work up to 300mm deep where a high degree of accuracy is required. They usually require attendant haulage vehicles to remove the spoil and need to be transported between sites on a low-loader. Because of their limitations and the alternative machines available they are seldom used today.
Face Shovels – the primary function of this piece of plant is to excavate above its own track or wheel level. They are available as a universal power unit-based machine or as a hydraulic purpose-designed unit. These machines can usually excavate any type of soil except rock which needs to be loosened, usually by blasting, prior to excavation. Face shovels generally require attendant haulage vehicles for the removal of spoil and a low-loader transport lorry for travel between sites. Most of these machines have a limited capacity of between 300 and 400 mm for excavation below their own track or wheel level.
Backacters - these machines are suitable for trench, foundation and basement excavations and are available as a universal power unit-based machine or as a purpose-designed hydraulic unit. They can be used with or without attendant haulage vehicles since the spoil can be placed alongside the excavation for use in backfilling. These machines will require a low-loader transport vehicle for travel between sites. Backacters used in trenching operations with a bucket width equal to the trench width can be very accurate with a high output rating.
Draglines - these machines are based on the universal power unit with basic crane rigging to which is attached a drag bucket. The machine is primarily designed for bulk excavation in loose soils up to 3,000 below its own track level by swinging the bucket out to the excavation position and hauling or dragging it back towards the power unit. Dragline machines can also be fitted with a grab or clamshell bucket for excavating in very loose soils.

Typical Dragline Details

- Bucket capacities up to 3.25 m³ available
- Bucket discharge position
- Hoist chain
- Bucket tipping rope
- Diesel engine universal tracked power unit
- Boom suspension rope
- Pendant rope
- Drag rope
- Drag chain
- Front discharge drag bucket
- Grab bucket in open position
- Hoist rope
- Tag rope

Typical Grab Bucket
Multi-purpose Excavators - these machines are usually based on the agricultural tractor with two- or four-wheel drive and are intended mainly for use in conjunction with small excavation works such as those encountered by the small to medium sized building contractor. Most multi-purpose excavators are fitted with a loading/excavating front bucket and a rear backacter bucket both being hydraulically controlled. When in operation using the backacter bucket the machine is raised off its axles by rear-mounted hydraulic outriggers or jacks and in some models by placing the front bucket on the ground. Most machines can be fitted with a variety of bucket widths and various attachments such as bulldozer blades, scarifiers, grab buckets and post hole auger borers.

Typical Multi-purpose Excavator Details -

bucket in raised position

bucket in discharge position

enclosed glazed cab with all round vision

bucket raised in tucked position

pivot connection giving 180° arc of operation

boom

dipper arm

ram

four-cylinder diesel engine tractor

hydraulic outriggers

loading/excavating bucket - capacities up to 1m³ - widths up to 2,000

typical maximum road speed 30 km/h

backacter or backhoe bucket - capacities up to 0.28 m³ - widths up to 900 mm
Transport Vehicles

Transport Vehicles – these can be defined as vehicles whose primary function is to convey passengers and/or materials between and around building sites. The types available range from the conventional saloon car to the large low-loader lorries designed to transport other items of builders plant between construction sites and the plant yard or depot.

Vans – these transport vehicles range from the small two-person plus a limited amount of materials to the large vans with purpose-designed bodies such as those built to carry large sheets of glass. Most small vans are usually fitted with a petrol engine and are based on the manufacturer’s standard car range whereas the larger vans are purpose designed with either petrol or diesel engines. These basic designs can usually be supplied with an uncovered tipping or non-tipping container mounted behind the passenger cab for use as a ‘pick-up’ truck.

Passenger Vehicles – these can range from a simple framed cabin which can be placed in the container of a small lorry or ‘pick-up’ truck to a conventional bus or coach. Vans can also be designed to carry a limited number of seated passengers by having fixed or removable seating together with windows fitted in the van sides, thus giving the vehicle a dual function. The number of passengers carried can be limited so that the driver does not have to hold a PSV (public service vehicle) licence.

Lorries – these are sometimes referred to as haul vehicles and are available as road- or site-only vehicles. Road haulage vehicles have to comply with all the requirements of the Road Traffic Acts which among other requirements limit size and axle loads. The off-highway or site-only lorries are not so restricted and can be designed to carry two to three times the axle load allowed on the public highway. Site-only lorries are usually specially designed to traverse and withstand the rough terrain encountered on many construction sites. Lorries are available as non-tipping, tipping and special-purpose carriers such as those with removable skips and those equipped with self-loading and unloading devices. Lorries specifically designed for the transportation of large items of plant are called low-loaders and are usually fitted with integral or removable ramps to facilitate loading and some have a winching system to haul the plant onto the carrier platform.
Dumpers ~ these are used for the horizontal transportation of materials on and off construction sites generally by means of an integral tipping skip. Highway dumpers are of a similar but larger design and can be used to carry materials such as excavated spoil along the roads. A wide range of dumpers are available of various carrying capacities and options for gravity or hydraulic discharge control with front tipping, side tipping or elevated tipping facilities. Special format dumpers fitted with flat platforms, rigs to carry materials skips and rigs for concrete skips for crane hoisting are also obtainable. These machines are designed to traverse rough terrain but they are not designed to carry passengers, and this misuse is the cause of many accidents involving dumpers.

Typical Dumper Details:
- Diesel engine giving a maximum forward speed of 16 km/h
- Sprung steel seat
- Roll bar
- Gravity tipping skip with heaped capacity of 0.62 m³
- Steering wheels
- Hydraulic tipping skip mounted on 180° slewing turntable with five set positions
- Driving wheels

Standard Dumper

Swivel Skip Dumper

Highway Dumper

- Hydraulically operated rear tipping skip with a heaped capacity of 10 m³
- Driving cab
- Diesel engine giving a maximum forward speed of 50 km/h

Two- or four-wheel drive versions available
Fork Lift Trucks - these are used for the horizontal and limited vertical transportation of materials positioned on pallets or banded together such as brick packs. They are generally suitable for construction sites where the building height does not exceed three storeys. Although designed to negotiate rough terrain site fork lift trucks have a higher productivity on firm and level soils. Three basic fork lift truck formats are available, namely straight mast, overhead and telescopic boom with various height, reach and lifting capacities. Scaffolds onto which the load(s) are to be placed should be strengthened locally or a specially constructed loading tower could be built as an attachment to or as an integral part of the main scaffold.

Typical Fork Lift Truck Details -

- Telescopic straight mast:
 - Forward tilt 3° max.
 - Backward tilt 10° max.
 - Maximum lift height - 5.700
 - Maximum load - 1.5 tonnes

- Telescopic boom:
 - Maximum forward reach - 3.350
 - Maximum lift height - 8.500
 - Maximum load - 2 tonnes

- Overhead mast:
 - Maximum forward reach - 2.350
 - Maximum lift height - 6.500
 - Maximum load - 1.5 tonnes

NB. Loads must be placed correctly on forks and the fork lift truck must not be overloaded.
Hoists — these are designed for the vertical transportation of materials, passengers, or materials and passengers (see page 218). Materials hoists are designed for one specific use (i.e. the vertical transportation of materials) and under no circumstances should they be used to transport passengers. Most material hoists are of a mobile format which can be dismantled, folded onto the chassis and moved to another position or site under their own power or towed by a haulage vehicle. When in use material hoists need to be stabilised and/or tied to the structure and enclosed with a protective screen.

Typical Materials Hoist Details —

- **Top bracket with automatic overrun control**
- **Lattice hoist mast 7.320 high which can be extended by adding further hoist mast sections to 32.000 high providing tie support is given every 2.750 above the initial 7.320 mast height**
- **Hoist rope**
- **Tubular mast support struts**
- **1.500 wide x 1.200 deep two barrow hardwood timber hoist platform with a maximum load capacity of 500kg**
- **Timber buffer plate**
- **Stabilising jacks or outriggers**
Passenger Hoists - these are designed to carry passengers, although most are capable of transporting a combined load of materials and passengers within the lifting capacity of the hoist. A wide selection of hoists are available ranging from a single cage with rope suspension to twin cages with rack and pinion operation mounted on two sides of a static tower.

Typical Passenger Hoist Details -

- Passenger hoist tower assembled from 1.500-long sections to a maximum tied height of 240,000
- Climbing rack
- Working platform on top of cage for scaffold-type crane used to extend hoist tower
- Electric motor and pinion housed behind cage
- 1.680-long x 1.370-wide enclosed passenger cage
- Access gate hoist
- 2.600-high wire mesh screen enclosure to lowest hoist position
- Reinforced concrete base

2.700-high cage to carry 12 persons or a total payload of 1,000 kg at speeds of 40 to 100 metres per minute

Landings as required

NB. Operation of hoist is from within the cage and the hoist must be fitted to prevent any overrun
Summary:

• Enclosures and gates at least two metres high to protect people at ground level from the moving platform and counterweight.

• Except when loading or unloading, access gates to be closed.

• Platform to have a fail-safe mechanism capable of supporting a full load in event of hoisting equipment failure.

• Automatic overrun prevention devices to be fitted at the top and bottom.

• Micro-switch feature on the gates to prevent platform being operated until the gates are properly closed and to prevent the gates being opened in between landings.

• Control from one point only if not controlled from within the cage.

• Operator to have an unobstructed view throughout the hoist's travel, or a banksman/signaller to be appointed to cover all landings.

• Additional safety features to include an automatic braking system, multiple roping and back-up cylinder for hydraulic hoists. Equipment specification to have a high factor of safety.

• Safe working load (SWL), otherwise expressed as rated capacity or working load limit for materials and passengers to be clearly displayed on the platform.

• Assembly and completion to be approved by an appropriately experienced and trained person. Pre-checks required at the start of each working day and after alterations and repairs. Periodic examinations to be undertaken as determined by use and exposure. All inspections to be documented, dated and filed.

* Passenger hoists to have the cage designed to retain occupants without becoming trapped or to be struck by debris falling down the hoist shaft.

* Material loads to be restrained or contained to prevent tipping or spillage.

Ref. The Lifting Operations and Lifting Equipment Regulations 1998 (known by the acronym LOLER).

NB. LOLER regulations are made under the Health and Safety at Work, etc. Act. They also apply to cranes, fork lift trucks and mobile elevating work platforms.
Rubble Chutes — these apply to contracts involving demolition, repair, maintenance and refurbishment. The simple concept of connecting several perforated dustbins is reputed to have been conceived by an ingenious site operative for the expedient and safe conveyance of materials.

In purpose-designed format, the tapered cylinders are produced from reinforced rubber with chain linkage for continuity. Overall unit lengths are generally 1100mm, providing an effective length of 1m. Hoppers and side entry units are made for special applications.

Ref. Highways Act — written permit (licence) must be obtained from the local authority highways department for use of a skip on a public thoroughfare. It will have to be illuminated at night and may require a temporary traffic light system to regulate vehicles.
Cranes - these are lifting devices designed to raise materials by means of rope operation and move the load horizontally within the limitations of any particular machine. The range of cranes available is very wide and therefore choice must be based on the loads to be lifted, height and horizontal distance to be covered, time period(s) of lifting operations, utilisation factors and degree of mobility required. Crane types can range from a simple rope and pulley or gin wheel to a complex tower crane but most can be placed within one of three groups, namely mobile, static and tower cranes.

Typical Crane Classifications -

- Mobile Crane: low pivot crane operating position can be changed by crane under its power
- Static Crane: low pivot crane operated from a fixed position
- Tower Crane: high pivot crane can be operated from a fixed position or rail mounted and mobile

NB. Static and tower cranes can be positioned closer to the face of the building than a low pivot mobile crane.
Self Propelled Cranes ~ these are mobile cranes mounted on a wheeled chassis and have only one operator position from which the crane is controlled and the vehicle driven. The road speed of this type of crane is generally low, usually not exceeding 30km p.h. A variety of self propelled crane formats are available ranging from short height lifting strut booms of fixed length to variable length lattice booms with a fly jib attachment.

Typical Self Propelled Crane Details ~

- **fly jib attachment** (see page 224)

typical specification
- main boom length 38:000 maximum
- lifting capacities for a 24:000 main boom length:
 - stabilised on outriggers:
 - 31:4 tonnes at 4:000 radius
 - 19:0 tonnes at 8:000 radius
 - free on wheels:
 - 9:6 tonnes at 4:000 radius
 - 4:9 tonnes at 8:000 radius

- **pendant rope**
- **boom suspension ropes**
- **diesel engine power unit with a 360° slewing capacity**
- **slewing ring**
- **chassis fitted with restrictor wheels to control tyre deflection**
- **top boom section**
- **two to 14 falls of rope**
- **hoist block**
- **intermediate boom sections**
- **bottom boom section**
- **operator's cab**

4 No. stabilisers or outriggers
Lorry Mounted Cranes - these mobile cranes consist of a lattice or telescopic boom mounted on a specially adapted truck or lorry. They have two operating positions: the lorry being driven from a conventional front cab and the crane being controlled from a different location. The lifting capacity of these cranes can be increased by using outrigger stabilising jacks and the approach distance to the face of the building decreased by using a fly jib. Lorry mounted telescopic cranes require a firm surface from which to operate and because of their short site preparation time they are ideally suited for short hire periods.

Typical Lorry Mounted Telescopic Crane Details -

- boom length 18.000
- lifting capacities:
 - stabilised on outriggers -
 - 11.8 tonnes at 5.000 radius
 - 4.3 tonnes at 11.000 radius
 - free on wheels -
 - 2.4 tonnes at 5.000 radius
 - 0.5 tonnes at 11.000 radius
- maximum road speed 65km/h

single or multiple falls of rope

hoist block

hoist rope

telescoping double-acting hydraulic ram housed within boom sections

twin double-acting hydraulic luffing rams

diesel powered lorry

slewing ring

duplicate crane controls at rear

4 No. outrigger stabilising jacks
Lorry Mounted Lattice Jib Cranes — these cranes follow the same basic principles as the lorry mounted telescopic cranes but they have a lattice boom and are designed as heavy duty cranes with lifting capacities in excess of 100 tonnes. These cranes will require a firm, level surface from which to operate and can have a folding or sectional jib which will require the crane to be rigged on site before use.

Typical Lorry Mounted Lattice Jib Crane Details:

- **typical specification**
 - maximum jib length 54.860
 - fly jib length 15,000
 - maximum load 55 tonnes
 - using jib length of 7.600
 - and an operating radius of 3.600 with outriggers or
 - 15,000 tonnes free on wheels
 - lifting capacity of fly jib
 - approximately half that of
 - jib for defined radii
 - maximum road speed 45 km/h

- **auxiliary hoist rope**
- **main hoist rope**
- **pendant or luffing rope**
- **jib suspension ropes**
- **diesel engine lorry**
- **4 No. outrigger stabilising jacks**
Track Mounted Cranes ~ these machines can be a universal power unit rigged as a crane (see page 210) or a purpose-designed track mounted crane with or without a fly jib attachment. The latter type are usually more powerful with lifting capacities of up to 45 tonnes. Track mounted cranes can travel and carry out lifting operations on most sites without the need for special road and hardstand provisions but they have to be rigged on arrival after being transported to site on a low-loader lorry.

Typical Track Mounted or Crawler Crane Details ~

maximum jib length 30.000
which can be extended by a
fly jib attachment 9.000 or
12.000 long giving a load
capacity of 5.5 tonnes at
7.000 radius or outreach
for the combination

pendant or luffing rope

hoist rope

hoist block

multiple falls of rope

fly jib attachment
(see page 222)

typical specification -
using a boom length of
30.000 maximum loads are:
15.8 tonnes at 4.000 radius
5.4 tonnes at 12.000 radius
2.2 tonnes at 24.000 radius
maximum travelling speed
1.6km/h

sectionalised lattice jib
diesel powered crawler unit
with 360° slewing capacity
Gantry Cranes – these are sometimes called portal cranes and consist basically of two ‘A’ frames joined together with a cross-member on which transverses the lifting appliance. In small gantry cranes (up to 10 tonnes lifting capacity) the ‘A’ frames are usually wheel mounted and manually propelled whereas in the large gantry cranes (up to 100 tonnes lifting capacity) the ‘A’ frames are mounted on powered bogies running on rail tracks with the driving cab and lifting gear mounted on the cross-beam or gantry. Small gantry cranes are used primarily for loading and unloading activities in stock yards whereas the medium and large gantry cranes are used to straddle the work area such as in power station construction or in repetitive low- to medium-rise developments. All gantry cranes have the advantage of three-direction movement:

1. Transverse by moving along the cross-beam.
2. Vertical by raising and lowering the hoist block.
3. Horizontal by forward and reverse movements of the whole gantry crane.

Typical Gantry Crane Details ~

- Driving cab
- Hoist block
- Lattice ‘A’ frames
- Span between frames 20,000
- Maximum height under hook 25,000
- Maximum lifting capacity 20 tonnes
- Maximum travel speed along rails 100 metres per minute
- Powered bogies
Mast Cranes — these are similar in appearance to the familiar tower cranes but they have one major difference in that the mast or tower is mounted on the slewing ring and thus rotates, whereas a tower crane has the slewing ring at the top of the tower and therefore only the jib portion rotates. Mast cranes are often mobile, self-erecting, of relatively low lifting capacity and are usually fitted with a luffing jib. A wide variety of models are available and have the advantage over most mobile low pivot cranes of a closer approach to the face of the building.

Typical Mast Crane Details —

- 15,000 long luffing jib
- Jib holding rope
- Jib luffing ropes
- Jib in horizontal position
 - Maximum load at end of jib = 550 kg
 - Maximum load at 9.500 radius = 900 kg
 - Maximum height under hook = 14,000
- NB. radius = horizontal distance from ℓ of slewing ring to hook
- Self-erecting lattice mast and jib which folds onto slewing platform chassis for towing by standard lorry or similar vehicle
- Winch housing encloses winch, electric motor and ballast
- Stabilising and levelling jacks

jib luffed at 45° -
radius = 10.700
maximum load at end of jib = 550 kg with
maximum height under hook of 24.700

trolley and hoist block
Tower Cranes - most tower cranes have to be assembled and erected on site prior to use and can be equipped with a horizontal or luffing jib. The wide range of models available often makes it difficult to choose a crane suitable for any particular site but most tower cranes can be classified into one of four basic groups thus:

1. Self-supporting Static Tower Cranes - high lifting capacity with the mast or tower fixed to a foundation base - they are suitable for confined and open sites (see page 229).

2. Supported Static Tower Cranes - similar in concept to self-supporting cranes and are used where high lifts are required, the mast or tower being tied at suitable intervals to the structure to give extra stability (see page 230).

3. Travelling Tower Cranes - these are tower cranes mounted on power bogies running on a wide gauge railway track to give greater site coverage - only slight gradients can be accommodated, therefore a reasonably level site or specially constructed railway support trestle is required (see page 231).

4. Climbing Cranes - these are used in conjunction with tall buildings and structures. The climbing mast or tower is housed within the structure and raised as the height of the structure is increased. Upon completion the crane is dismantled into small sections and lowered down the face of the building (see page 232).

All tower cranes should be left in an 'out of service' condition when unattended and in high wind conditions, the latter varying with different models but generally wind speeds in excess of 60 km p.h. would require the crane to be placed in an out of service condition thus:

- Cab left unattended
- Fuel and power supplies turned off
- Rail-mounted crane wheels to be clamped or chocked
- Jib left on free slew and pointed in direction of the wind on the leeward side
- Load removed, hook raised to highest position and the trolley parked as close as possible to the tower
- Tower
Cranes

Typical Self-supporting Static Tower Crane Details -
precast concrete counterweight blocks

jib stay rods

counter-jib stay rods

stay rods support frame

triangular jib

trolley

hoist block

- 25,000 long jib lifting 500 kg at maximum radius and 2 tonnes at minimum radius

- 30,000 high sectionalised tower fixed to foundation base with holding bolts through base frame

mass or reinforced concrete foundation base

Tower Crane Operation - two methods are in general use:

1. Cab Control - the crane operator has a good view of most of the lifting operations from the cab mounted at the top of the tower but a second person or banksman is required to give clear signals to the crane operator and to load the crane.

2. Remote Control - the crane operator carries a control box linked by a wandering lead to the crane controls.
Typical Supported Static Tower Crane Details -

- **counter-jib** stay rods
- jib stay rods
- motors and winches
- slewing tower
- triangular jib
- trolley
- hoist block

- precast concrete counterweight blocks
- anchorages to building
- access ladder with safety hoops fixed to external face of tower
- sectionalised tower fixed to foundation base with holding bolts through base frame
- bracing or struts
- base frame

- **height above last tie** not more than 75% of free-standing height
- spacing of all further ties not more than 20% of free-standing height
- not more than 30% of free-standing height
- not more than 50% of free-standing height

NB. the above tie spacings are typical for specific cranes; see supplier’s data.
Typical Travelling (Rail Mounted) Tower Crane Details -

- precast concrete counterweight blocks
- counter-jib stay rods
- precast concrete ballast blocks evenly placed to both sides at base of tower
- struts
- powered bogies
- cab
- lifting capacities: max. radius 1.0 tonnes
 min. radius 4.0 tonnes
- sectionalised tower fixed to rail mounted chassis forming free standing crane
- 4.800 gauge level rail track fixed to timber sleepers with 35 mm diameter bolts as tie rods to opposite rails.
 Minimum inner radius for curved track 10.000
 Maximum gradient for sloping tracks 1:200

PLAN ON RAIL TRACK

- compacted aggregate track support
Typical Climbing Crane Details:

- Crane raised one or two storeys at a time according to crane type and/or needs.
- Crane raised to new working position after floor(s) have been cast and cured.
- Precast concrete counterweight blocks.
- Stay rods support mast.
- Jib stay rods.
- Triangular jib.
- Motors and winches.
- Counter-jib stay rods.
- Sectional tower.
- Climbing rope anchorage.
- Cab.
- Trolley.
- Slewing ring.
- Hoist block.
- Floor under construction.
- Winch drum.
- Electric motor.
- Platform.
- Self-adjusting wedges and collar if required.
- Cast and cured floors.
- Support platform.
- High-rise building.

Cranes
Concreting ~ this site activity consists of four basic procedures:

1. Material Supply and Storage ~ this is the receiving on site of the basic materials namely cement, fine aggregate and coarse aggregate and storing them under satisfactory conditions (see Concrete Production ~ Materials on pages 325 and 326).

2. Mixing ~ carried out in small batches this requires only simple handheld tools whereas when demand for increased output is required mixers or ready mixed supplies could be used (see Concrete Production on pages 327 to 332 and Concreting Plant on pages 234 to 239).

3. Transporting ~ this can range from a simple bucket to barrows and dumpers for small amounts. For larger loads, especially those required at high level, crane skips could be used:

For the transportation of large volumes of concrete over a limited distance concrete pumps could be used (see page 237).

4. Placing Concrete ~ this activity involves placing the wet concrete in the excavation, formwork or mould: working the concrete between and around any reinforcement: vibrating and/or tamping and curing (see Concreting Plant on page 238 and Formwork on page 600).

Concrete Mixers ~ apart from the very large output mixers most concrete mixers in general use have a rotating drum designed to produce a concrete without segregation of the mix.

Concreting Plant ~ the selection of concreting plant can be considered under three activity headings:
1. Mixing. 2. Transporting. 3. Placing.

Choice of Mixer ~ the factors to be taken into consideration when selecting the type of concrete mixer required are:
1. Maximum output required (m³/hour).
2. Total output required (m³).
3. Type or method of transporting the mixed concrete.
4. Discharge height of mixer (compatibility with transporting method).

Concrete mixer types are generally related to their designed output performance, therefore when the answer to the question ‘How much concrete can be placed in a given time period?’ or alternatively ‘What mixing and placing methods are to be employed to mix and place a certain amount of concrete in a given time period?’ has been found the actual mixer can be selected. Generally a batch mixing time of 5 minutes per cycle or 12 batches per hour can be assumed as a reasonable basis for assessing mixer output.

Small Batch Mixers ~ these mixers have outputs of up to 200 litres per batch with wheelbarrow transportation an hourly placing rate of 2 to 3 m³ can be achieved. Most small batch mixers are of the tilting drum type. Generally these mixers are hand loaded which makes the quality control of successive mixes difficult to regulate.

Typical Example ~

![Diagram of a concrete mixer with a petrol or diesel engine, steel or tyred wheels, a towing bar, and a discharge drum capacity of 100 litres mixed.](image)

SIDE ELEVATION

END ELEVATION
Medium Batch Mixers ~ outputs of these mixers range from 200 to 750 litres and can be obtained at the lower end of the range as a tilting drum mixer or over the complete range as a non-tilting drum mixer with either reversing drum or chute discharge. The latter usually has a lower discharge height. These mixers usually have integral weight batching loading hoppers, scraper shovels and water tanks, thus giving better quality control than the small batch mixers. Generally they are unsuitable for wheelbarrow transportation because of their high output.

Typical Examples ~

- Loading hopper in loading position - hopper raised by double acting hydraulic ram
- 55 litre water tank
- Steel mixing drum with rear discharge - 200 litre mixed capacity

NB, the volume output of all concrete mixers is approx. 30% less than the dry input volume due to the consolidation which takes place during mixing.

Concreting Plant
Transporting Concrete ~ the usual means of transporting mixed concrete produced in a small capacity mixer is by wheelbarrow. The run between the mixing and placing positions should be kept to a minimum and as smooth as possible by using planks or similar materials to prevent segregation of the mix within the wheelbarrow.

Dumpers ~ these can be used for transporting mixed concrete from mixers up to 600 litre capacity when fitted with an integral skip and for lower capacities when designed to take a crane skip.

Ready Mixed Concrete Trucks ~ these are used to transport mixed concrete from a mixing plant or depot to the site. Usual capacity range of ready mixed concrete trucks is 4 to 6 m³. Discharge can be direct into placing position via a chute or into some form of site transport such as a dumper, crane skip or concrete pump.
Concrete Pumps – these are used to transport large volumes of concrete in a short time period (up to 100 m3 per hour) in both the vertical and horizontal directions from the pump position to the point of placing. Concrete pumps can be trailer or lorry mounted and are usually of a twin cylinder hydraulically driven format with a small bore pipeline (100 mm diameter) with pumping ranges of up to 85,000 vertically and 200,000 horizontally depending on the pump model and the combination of vertical and horizontal distances. It generally requires about 45 minutes to set up a concrete pump on site including coating the bore of the pipeline with a cement grout prior to pumping the special concrete mix. The pump is supplied with pumpable concrete by means of a constant flow of ready mixed concrete lorries throughout the pumping period after which the pipeline is cleared and cleaned. Usually a concrete pump and its operator(s) are hired for the period required.
Placing Concrete ~ this activity is usually carried out by hand with the objectives of filling the mould, formwork or excavated area to the correct depth, working the concrete around any inserts or reinforcement and finally compacting the concrete to the required consolidation. The compaction of concrete can be carried out using simple tamping rods or boards, or alternatively it can be carried out with the aid of plant such as vibrators.

Poker Vibrators ~ these consist of a hollow steel tube casing containing a rotating impeller which generates vibrations as its head comes into contact with the casing.

Poker vibrators should be inserted vertically and allowed to penetrate 75mm into any previously vibrated concrete.

Clamp or Tamping Board Vibrators ~ clamp vibrators are powered either by compressed air or electricity whereas tamping board vibrators are usually petrol driven.
Power Float— a hand-operated electric motor or petrol engine, surmounted over a mechanical surface skimmer. Machines are provided with an interchangeable revolving disc and a set of blades. These are used in combination to produce a smooth, dense and level surface finish to in-situ concrete beds.

The advantages offset against the cost of plant hire are:

* Eliminates the time and materials needed to apply a finishing screed.
* A quicker process and less labour-intensive than hand trowelling.

Application— after transverse tamping, the concrete is left to partially set for a few hours. Amount of setting time will depend on a number of variables, including air temperature and humidity, mix specification and machine weight. As a rough guide, walking on the concrete will leave indentations of about 3–4 mm. A surfacing disc is used initially to remove high tamping lines, before two passes with blades to finish and polish the surface.
Definition ~ curing of concrete can be explained as a series of chemical reactions that occur between cement in a concrete mix and the water, a process known as hydration. For concrete to achieve its correct design strength, hydration must be carefully controlled. In effect, it is the process of initial setting of concrete into a solid mass and subsequent hardening.

Adhesion ~ cement combining with water forms an adhesive paste. It sets slowly, gaining strength and hardening over time. In a thoroughly mixed batch of concrete the paste functions as a glue, adhering to the aggregates and binding them into a solid mass. Hydration continues indeﬁnitely as the concrete gets harder. The critical period is within the ﬁrst few hours as the concrete changes state from a liquid to a solid. Under controlled curing conditions concrete attains design strength after about 28 days.

Temperature ~ the hydration of cement generates a rise in temperature, possibly up to 20° C. therefore it is very important to regulate the cement content (see w/c ratio on page 329). Too much cement will cause excessive thermal expansion followed by contraction on cooling and setting, introducing potential for thermal stress cracking. The ideal ambient temperature during concreting is between 10° C and 24° C. This should be maintained throughout curing.

Water Retention ~ initial setting time is the most crucial for concrete to gain its design strength, therefore water must be retained and prevented from evaporating. Conversely, the addition of water from exposure to rain during the initial setting must also be prevented. Once set (24 hours after pouring) surface water can be a useful means of hydration control. Ideally, fresh concrete should be kept moist for at least 7 days when using OPC, otherwise shrinkage will induce tensile stresses manifesting in surface cracks. With other cements such as the rapid setting and hardening types, the manufacturer should be consulted to establish optimum curing time.

Curing Methods ~ the longer the time during which fresh concrete is kept moist, the more efﬁcient will be the hardening process. Concrete should be protected from exposure to sunshine and high air temperatures in summer, drying winds, potentially freezing low air temperatures in winter and low relative humidity.
Setting ~ concrete will normally set within the working day. This can vary somewhat with air temperatures as indicated below.

Methods for Retaining Water Content in Set Concrete ~

- Sealing by leaving the formwork/shuttering in place.
- Covering with an impervious membrane, e.g. plastic sheeting.
- Spraying with water.
- Spraying with a purpose made curing agent. A solvent based acrylic resin will also function as a surface sealant (polyurethane acrylic).
- Ponding by covering the concrete with a layer of water creating a temporary reservoir.
- For winter use, an insulating cover or blanket possibly with an electric element to prevent water content freezing.
- Steaming ~ appropriate in factory controlled situations. A sealed compartment contains circulation of a vapour of warm moist air.

Note: Period of curing should be as long as is practicable, maintained above 5°C for a minimum of 7 days. Demand for progress may limit these ideal measures hence the availability of mix additives and special cements with rapid setting and hardening properties. These should only be used with strict application of the manufacturer’s instructions and/or to the structural engineer’s specification.
This page intentionally left blank
4 SUBSTRUCTURE

FOUNDATIONS – FUNCTION, MATERIALS AND SIZING
FOUNDATION BEDS
SHORT BORED PILE FOUNDATIONS
FOUNDATION TYPES AND SELECTION
PILED FOUNDATIONS
RETAINING WALLS
GABIONS AND MATTRESSES
BASEMENT CONSTRUCTION
WATERPROOFING BASEMENTS
EXCAVATIONS
CONCRETE PRODUCTION
COFFERDAMS
STEEL SHEET PILING
CAISSONS
UNDERPINNING
GROUND WATER CONTROL
SOIL STABILISATION AND IMPROVEMENT
RECLAMATION OF WASTE LAND
TREATMENT OF CONTAMINATED SUBSOIL
Foundations – Functions

Foundations – the function of any foundation is to safely sustain and transmit to the ground on which it rests the combined dead, imposed and wind loads in such a manner as not to cause any settlement or other movement which would impair the stability or cause damage to any part of the building.

Example –

Subsoil beneath foundation is compressed and reacts by exerting an upward pressure to resist foundation loading. If foundation load exceeds maximum passive pressure of ground (i.e. bearing capacity) a downward movement of the foundation could occur. Remedy is to increase plan size of foundation to reduce the load per unit area or alternatively reduce the loadings being carried by the foundations.
Subsoil Movements — these are due primarily to changes in volume when the subsoil becomes wet or dry and occurs near the upper surface of the soil. Compact granular soils such as gravel suffer very little movement whereas cohesive soils such as clay do suffer volume changes near the upper surface. Similar volume changes can occur due to water held in the subsoil freezing and expanding — this is called Frost Heave.

Typical Examples:

- Wall tends to tilt with ground movement and cracks can occur.
 - Roof and floors protect ground below from elements.
 - Soil exposed to the weather elements.
 - Depth 600mm or less below ground level.

- Wall remains stable under most conditions.
 - Roof and floors protect ground below from elements.
 - Soil exposed to the weather elements.
 - No ground movement should occur at depths below 1.800.

- Depth at least 1.000 below ground level will produce only very slight ground movement which should not affect stability of foundations.
Trees ~ damage to foundations. Substructural damage to buildings can occur with direct physical contact by tree roots. More common is the indirect effect of moisture shrinkage or heave, particularly apparent in clay subsoils.

Shrinkage is most evident in long periods of dry weather, compounded by moisture abstraction from vegetation. Notably broad-leaved trees such as oak, elm and poplar in addition to the thirsty willow species. Heave is the opposite. It occurs during wet weather and is compounded by previous removal of moisture-dependent trees that would otherwise effect some drainage and balance to subsoil conditions.
Trees ~ effect on foundations. Trees up to 30 m distance may have an effect on foundations, therefore reference to local authority building control policy should be undertaken before specifying construction techniques.

Traditional strip foundations are practically unsuited, but at excavation depths up to 2.5 or 3.0 m, deep strip or trench fill (preferably reinforced) may be appropriate. Short bored pile foundations are likely to be more economical and particularly suited to depths exceeding 3.0 m.

For guidance only, the illustration and table provide an indication of foundation depths in shrinkable subsoils.

\[H = \text{Mature height of tree} \]
\[D = \text{Distance to centre of tree} \]

<table>
<thead>
<tr>
<th>Tree species</th>
<th>0.10</th>
<th>0.25</th>
<th>0.33</th>
<th>0.50</th>
<th>0.66</th>
<th>0.75</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oak, elm. poplar and willow</td>
<td>3.00</td>
<td>2.80</td>
<td>2.60</td>
<td>2.30</td>
<td>2.10</td>
<td>1.90</td>
<td>1.50</td>
</tr>
<tr>
<td>All others</td>
<td>2.80</td>
<td>2.40</td>
<td>2.10</td>
<td>1.80</td>
<td>1.50</td>
<td>1.20</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Minimum foundation depth (m)
Trees ~ preservation orders (see page 151) may be waived by the local planning authority. Permission for tree felling is by formal application and will be considered if the proposed development is in the economic and business interests of the community. However, tree removal is only likely to be acceptable if there is an agreement for replacement stock being provided elsewhere on the site.

In these circumstances there is potential for ground heave within the 'footprint' of felled trees. To resist this movement, foundations must incorporate an absorbing layer or compressible filler with ground floor suspended above the soil.

Deep Strip or Trench Fill Foundation
- Raised concrete floor slab
- 150mm min. void
- Compressible material 'clayboard' on inside of foundation
- Polythene slip membrane
- 500mm

Short Bored Pile Foundation
- Floor structure as above (see also page 416)
- Additional compressible material on beam face if required
- Compressible material to inside and underside of perimeter beam
- Reinforced concrete piles, spaced according to subsoil condition

Foundations — Subsoil Movements
Cracking in Walls ~ cracks are caused by applied forces which exceed those that the building can withstand. Most cracking is superficial, occurring as materials dry out and subsequently shrink to reveal minor surface fractures of < 2 mm. These insignificant cracks can be made good with proprietary fillers.

Severe cracking in walls may result from foundation failure, due to inadequate design or physical damage. Further problems could include:

- Structural instability
- Air infiltration
- Sound insulation reduction
- Rain penetration
- Heat loss
- Visual depreciation

A survey should be undertaken to determine:

1. The cause of cracking, i.e.
 - Loads applied externally (tree roots, subsoil movement).
 - Climate/temperature changes (thermal movement).
 - Moisture content change (faulty dpc, building leakage).
 - Vibration (adjacent work, traffic).
 - Changes in physical composition (salt or ice formation).
 - Chemical change (corrosion, sulphate attack).
 - Biological change (timber decay).

2. The effect on a building’s performance (structural and environmental).

3. The nature of movement - completed, ongoing or intermittent (seasonal).

Observations over a period of several months, preferably over a full year, will determine whether the cracking is new or established and whether it is progressing.

Simple method for monitoring cracks –

Further reading – BRE Digest 251: Assessment of damage in low rise buildings.
Foundation Materials ~ from page 244 one of the functions of a foundation can be seen to be the ability to spread its load evenly over the ground on which it rests. It must of course be constructed of a durable material of adequate strength. Experience has shown that the most suitable material is concrete.

Concrete is a mixture of cement + aggregates + water in controlled proportions.

CEMENT
Manufactured from clay and chalk and is the matrix or binder of the concrete mix. Cement powder can be supplied in bags or bulk -

Bags ~
- 25 kg
- airtight sealed bags requiring a dry, damp-free stock.

Bulk ~
- 12 to 50 tonnes
- delivered by tanker and pumped into storage silo.

AGGREGATES
Coarse aggregate is generally defined as a material which is retained on a 4mm sieve.

4mm sieve
- coarse aggregate

Fine aggregate is generally defined as a material which passes a 4mm sieve. Aggregates can be either natural rock which has disintegrated or crushed stone or gravel.

WATER
Must be of a quality fit for drinking.

MIXES
These are expressed as a ratio thus: 1:3:6/20 mm which means -
- 1 part cement
- 3 parts of fine aggregate
- 6 parts of coarse aggregate

20 mm — maximum size of coarse aggregate for the mix.

Water is added to start the chemical reaction and to give the mix workability ~ the amount used is called the Water/Cement Ratio and is usually about 0.4 to 0.5.

Too much water will produce a weak concrete of low strength whereas too little water will produce a concrete mix of low and inadequate workability.
Foundation Types

TRADITIONAL STRIP

SOLID SLAB RAFT

BEAM AND SLAB RAFT

Load bearing external wall

Depth sufficient to overcome soil movements

Load bearing external wall

Mass concrete (1:3:6) 15N/mm²

$W = \frac{\text{load per metre}}{\text{bearing capacity of soil or}}$

$W = \text{not less than that given in Table on page 255}$

NB. In all cases W must give adequate working space which is usually 450 to 600 mm minimum depending on depth of excavation.

Generally considered to be cheaper than traditional strip foundations since:

1. Fewer man hours required.
2. Requires less skilled trades.
3. Uses ready-mix concrete, therefore less material is stored on site making it clearer and easier to manage.
Foundation Types

ISOLATED PAD

- 50 to 75 mm thick blinding layer of ash, coarse sand or a lean mix concrete
- NB. ideal plan shape for the base is a square
- Area of base to be such that the unit load per m² does not exceed bearing capacity of the subsoil

COMBINED PAD

- Columns or piers placed so that their centre of gravity coincides with that of the base
- Reinforced concrete base
- Blinding
Bed ~ a concrete slab resting on and supported by the subsoil, usually forming the ground floor surface. Beds (sometimes called over-site concrete) are usually cast on a layer of hardcore which is used to make up the reduced level excavation and thus raise the level of the concrete bed to a position above ground level.

Typical Example ~

mass concrete bed (1:3:6/20mm mix 15N/mm²). Thickness for domestic work is usually 100 to 150mm and the bed is constructed so as to prevent the passage of moisture from the ground to the upper surface of the floor - this is usually achieved by incorporating into the design a damp-proof membrane ~ for details see page 759

100 to 150mm-thick layer of hardcore ~ material used should be inert and not affected by water. Suitable materials are gravel; crushed rock; quarry waste; concrete rubble; brick or tile rubble; blast furnace slag and pulverised fuel ash (fly ash). The hardcore material should be laid evenly and well compacted with the upper surface blindered with fine grade material such as sand. Sand blinding fills the gaps in the hardcore to prevent concrete wastage and to provide a relatively smooth and level surface for a 0.3mm LDPE (1200 gauge polythene) dpm where required.
Basic Sizing — the size of a foundation is basically dependent on two factors:

1. Load being transmitted, max 70kN/m (dwellings up to three storeys).
2. Bearing capacity of subsoil under proposed foundation.

For guidance on bearing capacities for different types of subsoil see BS EN 1997-1: Geotechnical design. General rules and BS 8103-1: Structural design of low rise buildings. Also, directly from soil investigation results.

Typical Examples ~

- safe bearing capacity of compact gravel subsoil = 100kN/m²
 - W = \(\frac{\text{load}}{\text{bearing capacity}} = \frac{50}{100} \) = 500mm minimum

- safe bearing capacity of clay subsoil = 80kN/m²
 - W = \(\frac{\text{load}}{\text{bearing capacity}} = \frac{50}{80} \) = 625mm minimum

The above widths may not provide adequate working space within the excavation and can be increased to give required space. Guidance on the minimum width for a limited range of applications can be taken from the table on the next page.

- column load = 450kN
 - area of base = \(\frac{\text{load}}{\text{bearing capacity of subsoil}} = \frac{450}{150} \) = 3 m²
 - side = \(\sqrt{3} \) = 1.732 min.

- column load = 575kN
 - area of base = \(\frac{\text{load}}{\text{bearing capacity of subsoil}} = \frac{575}{85} \) = 6.765 m²
 - side = \(\sqrt{6.765} \) = 2.6 min.
<table>
<thead>
<tr>
<th>Ground type</th>
<th>Ground condition</th>
<th>Field test</th>
<th>Max. total load on load-bearing wall (kN/m)</th>
<th>Minimum width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>Not inferior to sandstone, limestone or firm chalk</td>
<td>Requires a mechanical device to excavate.</td>
<td>20 30 40 50 60 70</td>
<td>At least equal to the width of the wall</td>
</tr>
<tr>
<td>Gravel</td>
<td>Medium density</td>
<td>Pick required to excavate. 50 mm square peg hard to drive beyond 150 mm. 250 300 400 500 600 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>Compact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>Stiff</td>
<td>Requires pick or mechanical device to aid removal. Can be indented slightly with thumb. 250 300 400 500 600 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>Stiff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>Firm</td>
<td>Can be moulded under substantial pressure by fingers. 300 350 450 600 750 850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>Firm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>Loose</td>
<td>Can be excavated by spade. 50 mm square peg easily driven. 400 600</td>
<td>Conventional strip foundations unsuitable for a total load exceeding 30 kN/m</td>
<td></td>
</tr>
<tr>
<td>Silty sand</td>
<td>Loose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clayey sand</td>
<td>Loose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>Soft</td>
<td>Finger pushed in up to 10 mm. Easily moulded with fingers. 450 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>Soft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>Soft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silty clay</td>
<td>Soft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>Very soft</td>
<td>Finger easily pushed in up to 25 mm. Wet sample exudes between fingers when squeezed.</td>
<td>Conventional strip inappropriate. Steel-reinforced wide strip, deep strip or piled foundation selected subject to specialist advice</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>Very soft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>Very soft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silty clay</td>
<td>Very soft</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Table 10 in the Bldg. Regs., A.D: A - Structure.
Typical Procedure (for guidance only) -

Dead load per m run (see pages 38 and 39)
Substructure brickwork, 1 m × 1 m × 476 kg/m² = 476 kg
....... cavity conc. (50 mm), 1 m × 1 m × 2300 kg/m³ = 115 kg
Foundation concrete, 0.15 m × 1 m × 0.5 m × 2300 kg/m³ = 173 kg
2300 kg/m³
Superstructure brickwork, 5 m × 1 m × 221 kg/m² = 1105 kg
....... blockwork & ins., 5 m × 1 m × 79 kg/m² = 395 kg
....... 2 coat plasterwork, 5 m × 1 m × 22 kg/m² = 110 kg
Floor joists/boards/plstbrd., 2.5 m × 1 m × 42.75 kg/m² = 107 kg
Ceiling joists/plstbrd/ins., 2.5 m × 1 m × 19.87 kg/m² = 50 kg
Rafters, battens & felt, 2.9 m × 1 m × 12.10 kg/m² = 35 kg
Single lap tiling, 2.9 m × 1 m × 49 kg/m² = 142 kg

2708 kg

Note: kg × 9.81 = Newtons
Therefore: 2708 kg × 9.81 = 26565 N or 26.56 kN

Imposed load per m run (see BS EN 1991-1-1: Densities, self-weight, imposed loads for buildings) -
Floor, 2.5 m × 1 m × 1.5 kN/m² = 3.75 kN
Roof, 2.9 m × 1 m × 1.5 kN/m² (snow) = 4.05 kN
7.80 kN

Note: For roof pitch >30°, snow load = 0.75 kN/m²
Dead + imposed load is 26.56 kN + 7.80 kN = 34.36 kN
Given that the subsoil has a safe bearing capacity of 75 kN/m²,
W = load + bearing capacity = 34.36 + 75 = 0.458 m or 458 mm
Therefore a foundation width of 500 mm is adequate.

Note: This example assumes the site is sheltered. If it is necessary to make allowance for wind loading, reference should be made to BS EN 1991-1-4: Wind actions.
Stepped Foundations ~ these are usually considered in the context of strip foundations and are used mainly on sloping sites to reduce the amount of excavation and materials required to produce an adequate foundation.

Typical Details:

- Ideally depth of step (S) should be in multiples of brick courses with a maximum depth not greater than D.
- Minimum overlap (L) = \(2 \times S\); D or 300mm whichever is the greater.
Concrete Foundations - concrete is a material which is strong in compression but weak in tension. If its tensile strength is exceeded cracks will occur, resulting in a weak and unsuitable foundation. One method of providing tensile resistance is to include in the concrete foundation bars of steel as a form of reinforcement to resist all the tensile forces induced into the foundation. Steel is a material which is readily available and has high tensile strength.

Comparisons

- **Compression zone**
- **Neutral axis**
- **Tension cracks**

Concrete foundation tends to bend, the upper fibres being compressed and the lower fibres being stretched and put in tension. Remedies: increase size of base or design as a reinforced concrete foundation.

Simple RC Foundations

Typical RC Foundation

- **Wall or column**
- **Reinforced concrete foundation**
- **75mm cover**
- **Steel reinforcement**
- **50 to 75mm thick blinding layer of weak concrete to provide accurate starting level**

Reinforcement Patterns

- **Distribution bars**
- **STRIP FOUNDATION**
- **SQUARE BASE**
- **Main bars at right angles to longitudinal axis**

Imposed loads induce tensile stresses in excess of concrete's own resistance

Size of foundation increased to provide the resistance against the induced tensile stresses - generally not economic due to the extra excavation and materials required
Short Bored Piles ~ these are a form of foundation which are suitable for domestic loadings and clay subsoils where ground movements can occur below the 1-000 depth associated with traditional strip and trench fill foundations. They can be used where trees are planted close to a new building since the trees may eventually cause damaging ground movements due to extracting water from the subsoil and root growth. Conversely where trees have been removed this may lead to ground swelling.

Typical Details ~

- 40 mm thick sand or lean concrete blinding
- depth of pile governed by level of suitable bearing capacity ground and/or stability of clay subsoil — economic maximum depth 4.500
- 250 to 300 mm diameter according to design
- bored and cast in-situ piles of mass concrete maximum spacing to design
- reinforced concrete ground beam cast in trench over short bored pile heads — size of beam and reinforcement to design or from tables
- 50 mm rigid insulation
- damp-proof membrane
- mass concrete ground floor
- compacted hardcore
- cavity insulation
- external wall
- damp-proof course
- ground level
- cavity filling
- typical spacing of piles 1.800 to 2.500
- typical loading 40 to 125 kN per pile

Piles formed by lorry or tractor mounted auger capable of drilling 80 piles per day
Simple Raft Foundations ~ these can be used for lightly loaded buildings on poor soils or where the top 450 to 600 mm of soil is overlaying a poor-quality substrata.

Typical Details ~

- **Cavity insulation**
- **External wall**
- **Floor screed**
- **Rigid insulation**
- **Damp-proof membrane**
- **Damp-proof course**
- **Weep holes at 900 c/c**
- **Damp-proof cavity tray min. 150 mm step**
- **Edge thickening to 150 mm min. thick RC raft**
- **75 mm-thick rolled sand or similar blinding**

REINFORCED CONCRETE RAFT WITH EDGE THICKENING

- **Cavity insulation**
- **External wall**
- **DPC**
- **Cavity tray**
- **Ground level**
- **Mass concrete edge beam**
- **Compacted hardcore with upper surface blinded with 50 mm coarse sand**
- **150 mm min.-thick RC raft forming ground floor slab**

REINFORCED CONCRETE RAFT WITH EDGE BEAM
Foundation Design Principles ~ the main objectives of foundation design are to ensure that the structural loads are transmitted to the subsoil(s) safely, economically and without any unacceptable movement during the construction period and throughout the anticipated life of the building or structure.

Basic Design Procedure ~ this can be considered as a series of steps or stages:

1. Assessment of site conditions in the context of the site and soil investigation report.
2. Calculation of anticipated structural loading(s).
3. Choosing the foundation type taking into consideration:
 - Soil conditions;
 - Type of structure;
 - Structural loading(s);
 - Economic factors;
 - Time factors relative to the proposed contract period;
 - Construction problems.
4. Sizing the chosen foundation in the context of loading(s), ground bearing capacity and any likely future movements of the building or structure.

Foundation Types ~ apart from simple domestic foundations most foundation types are constructed in reinforced concrete and may be considered as being shallow or deep. Most shallow types of foundation are constructed within 2-000 of the ground level but in some circumstances it may be necessary to take the whole or part of the foundations down to a depth of 2-000 to 5-000 as in the case of a deep basement where the structural elements of the basement are to carry the superstructure loads. Generally foundations which need to be taken below 5-000 deep are cheaper when designed and constructed as piled foundations and such foundations are classified as deep foundations. (For piled foundation details see pages 266 to 286.)

Foundations are usually classified by their type such as strips, pads, rafts and piles. It is also possible to combine foundation types such as strip foundations connected by beams to and working in conjunction with pad foundations.
Strip Foundations — these are suitable for most subsoils and light structural loadings such as those encountered in low to medium rise domestic dwellings where mass concrete can be used. Reinforced concrete is usually required for all other situations.

Typical Strip Foundation Types

TRADITIONAL STRIP
low rise domestic dwellings or similar buildings

DEEP STRIP or TRENCH FILL
alternative to traditional strip

REINFORCED CONCRETE STRIP
used where induced tension exceeds concrete’s own tensile resistance

CONTINUOUS COLUMN
used for closely spaced or close to boundary columns
Pad Foundations - suitable for most subsoils except loose sands, loose gravels and filled areas. Pad foundations are usually constructed of reinforced concrete and where possible are square in plan.

Typical Pad Foundation Types

- **RC or steel column**
- **2 layer grillage of universal beams**
- **RC base to design**
- **Mass concrete encasing 75mm min.**

ISOLATED or PAD FOUNDATION

designed to span in two directions therefore main bars are placed in the bottom both ways

- **RC or steel column**
- **Blinding**

RECTANGULAR PAD

used where width of base is restricted

plan shape can be a rectangle or where length is restricted a trapezium

COMBINED COLUMN FOUNDATIONS - outer column close to boundary or existing wall

STEEL GRILLAGE

used for heavy concentrated loads - seldom employed today

- **Reinforced concrete base designed to span in one direction - main bars longitudinal in bottom**
- **Outer or boundary column**
- **Inner column**
- **Centre of gravity of columns and base to coincide**
- **Main bars in bottom**
- **Main bars between columns in top**
Raft Foundations ~ these are used to spread the load of the superstructure over a large base to reduce the load per unit area being imposed on the ground and this is particularly useful where low bearing capacity soils are encountered and where individual column loads are heavy.

Typical Raft Foundation Types ~

- **RC column**
- **75mm high kicker**
- **75mm thick blinding**
- **Main bars**
- **Binders**
- **Distribution bars**

SOLID SLAB RAFT

- Reinforced concrete or steel columns positioned on beam intersections
- Ground beams

Used on poor soils where the beams are employed to spread the column loads over the raft

NB. Ground beams can be designed as upstand beams with a precast concrete suspended floor at ground level thus creating a void space between raft and ground floor.

BEAM AND SLAB RAFT
Cantilever Foundations ~ these can be used where it is necessary to avoid imposing any pressure on an adjacent foundation or underground service.

Typical Cantilever Foundation Types ~

Cantilever foundations designed and constructed in reinforced concrete.
Piled Foundations ~ these can be defined as a series of columns constructed or inserted into the ground to transmit the load(s) of a structure to a lower level of subsoil. Piled foundations can be used when suitable foundation conditions are not present at or near ground level making the use of deep traditional foundations uneconomic. The lack of suitable foundation conditions may be caused by:

1. Natural low bearing capacity of subsoil.
2. High water table - giving rise to high permanent dewatering costs.
3. Presence of layers of highly compressible subsoils such as peat and recently placed filling materials which have not sufficiently consolidated.
4. Subsoils which may be subject to moisture movement or plastic failure.

Classification of Piles ~ piles may be classified by their basic design function or by their method of construction:

- End Bearing Piles
- Friction or Floating Piles
- Replacement Piles
- Displacement Piles

NB. Piles can work in a combination of the above design functions.
Replacement Piles - these are often called bored piles since the removal of the spoil to form the hole for the pile is always carried out by a boring technique. They are used primarily in cohesive subsoils for the formation of friction piles and when forming pile foundations close to existing buildings where the allowable amount of noise and/or vibration is limited.

Replacement Pile Types -

PERCUSSION BORED
small or medium-size contracts with up to 300 piles
load range - 300 to 1300 kN
length range - up to 24,000
 diameter range - 300 to 900
may have to be formed as a pressure pile in waterlogged subsoils
(see page 268)

FLUSH BORED
large projects - these are basically a rotary bored pile using bentonite as a drilling fluid
load range - 1000 to 5000 kN
length range - up to 30,000
 diameter range - 600 to 1500
(see page 269)

ROTARY BORED

Small Diameter - <600 mm
light loadings - can also be used in groups or clusters with a common pile cap to receive heavy loads
load range - 50 to 400 kN
length range - up to 15,000
 diameter range - 240 to 600
(see pages 270 and 272)

Large Diameter - >600 mm
heavy concentrated loadings - may have an underreamed or belled toe
load range - 800 to 15000 kN
length range - up to 60,000
 diameter range - 600 to 2400
(see page 271)

NB. The above given data depicts typical economic ranges. More than one pile type can be used on a single contract.
Percussion Bored Piles

Typical Details

- Pulley
- Tripod or shear leg rig
- Hoist rope
- Weighted head
- Cruciform plan shaped steel body
- Cutting ring

Short lengths (1:000 to 1:400) of steel lining tube screwed together

- Clay cutter
- Granular soil shell
- Top holes for soil extraction
- Flap
- Steel lining tubes sink under own weight

BORING IN COHESIVE SOIL

Shear leg rig

- Collar with lugs
- Hydraulic jacks
- Reinforcement cage
- Internal drop hammer
- Concrete tamped by drop hammer

FORMING PILE USING DROP HAMMER

BORING IN GRANULAR SOIL

Shear leg rig

- Loading hopper and air lock
- Valve
- Compressed air supply
- Steel lining tubes pulled out of bore hole by winch as concrete is placed and consolidated
- Concrete consolidated by air pressure

FORMING PILE USING AIR PRESSURE
Flush Bored Piles

Typical Details -

Stage 1

standard crane power unit

- crane jib or boom
- kelly bar swivel connection
- telescopic rotary square kelly bar
- crane mounted kelly bar drive unit
- bentonite storage and draw-off connected to bentonite mixing plant

unlined borehole below upper casing

- type of cutter to suit subsoil

3.000 long steel casing

- bentonite filling to stabilise the excavation and support the sides of the borehole

Stage 2

standard crane power unit

- suspension rope for tremie pipe
- ready-mixed concrete
- displaced bentonite pumped to storage
- return, settling and storage containers

- steel casing removed by crane upon completion
- tremie pipe placing concrete below the level of the concrete already placed

in-situ concrete consolidated by gravitational force

NB. Bentonite is a controlled mixture of fullers earth and water which produces a slurry or mud which has thixotropic properties. When placed in the borehole it exerts a pressure in excess of earth + hydrostatic pressure.
Small Diameter Rotary Bored Piles

Typical Details -

- derrick or mast housing lifting ropes and single or telescopic kelly bar
- drilling rig can be lorry mounted as shown or crane mounted as shown on pages 269 and 271
- hydraulic derrick rams
- winch
- power unit
- outrigger jacks to stabilise and level vehicle when drilling
- borehole fully lined, partially lined or unlined according to type(s) of subsoil
- reinforcement to design
- auger type or drilling bucket to suit conditions
- completed pile - in situ concrete consolidated by gravitational force and placed by tremie pipe if water is present in borehole
- pile cap - see page 286
- reasonably level ground surface
- pile shaft
Large Diameter Rotary Bored Piles

Typical Details -

- crane jib or boom
- suspension rope
- kelly bar swivel connection
- rotary telescopic kelly bar
- crane mounted kelly bar drive unit
- reasonably level ground surface

- pile shaft of mass concrete or RC according to design
- completed pile - in-situ concrete consolidated by gravitational force and placed by tremie pipe if water is present in borehole
- pile cap bonding reinforcement if required
- guide casing - removed by crane upon completion
- borehole lined or unlined according to type(s) of subsoil
- auger type or drilling bucket to suit conditions

- in cohesive soils toe of pile can be underreamed up to 3 x pile shaft diameter to increase end bearing capacity
Continuous Flight Auger Bored Piles

Typical Details ~

- kelly bar
- pulleys suspension arm
- mobile kelly bar drive
- kelly bar drive guide
- flight auger
- hydraulic ram
- auger guide collar
- tracked power unit
- stabiliser

Completed pile shaft as shown on page 270

Standard pile diameters are 300, 450 and 600 mm. Depth of borehole to about 15 m.
Grout Injection Piling ~

A variation of continuous flight auger bored piling that uses an open ended hollow core to the flight. After boring to the required depth, high slump concrete is pumped through the hollow stem as the auger is retracted. Spoil is displaced at the surface and removed manually. In most applications there is no need to line the boreholes, as the subsoil has little time to be disturbed. A preformed reinforcement cage is pushed into the wet concrete.

Stages ~
1. Hole bored to established depth.
2. Concrete replaces auger as it is removed.
3. Reinforcement cage placed into wet concrete.
Displacement Piles — these are often called driven piles since they are usually driven into the ground, displacing the earth around the pile shaft. These piles can be either preformed or partially preformed if they are not cast in-situ and are available in a wide variety of types and materials. The pile or forming tube is driven into the required position to a predetermined depth or to the required ‘set’ which is a measure of the subsoil’s resistance to the penetration of the pile and hence its bearing capacity by noting the amount of penetration obtained by a fixed number of hammer blows.

Displacement Pile Types —

- **Preformed**
 - **Driven in-situ** (page 281)
 - **Cast in-situ** (page 282)

- **Partially Preformed**
 - **Timber** (page 275)
 - **Concrete** (page 276)
 - **Steel**
 - **Box** (page 278)
 - **Tube** (page 279)
 - **'H'** (page 278)
 - **Screw** (page 278)

- **PCC and in-situ concrete** (page 280)
- **Steel and in-situ concrete** (page 279)
Timber Piles – these are usually square sawn and can be used for small contracts on sites with shallow alluvial deposits overlaying a suitable bearing strata (e.g. river banks and estuaries). Timber piles are percussion driven.

Typical Example

![Diagram of a timber pile with mild steel components labeled: mild steel band, timber body, mild steel fixing straps, and mild steel shoe.]

Typical Data:
- load range - 50 to 350kN
- length range - up to 12.000 without splicing
- size range - 225 x 225
 - 300 x 300 *
 - 350 x 350 *
 - 400 x 400 *
 - 450 x 450
 - 600 x 600

 * common sizes

NB. timber piles are not easy to splice and are liable to attack by marine borers when set in waters; therefore such piles should always be treated with a suitable preservative before being driven.
Preformed Concrete Piles ~ variety of types available which are generally used on medium to large contracts of not less than one hundred piles where soft soil deposits overlie a firmer strata. These piles are percussion driven using a drop or single-acting hammer.

Typical Example [West’s Hardrive Precast Modular Pile]~

- **Piling Rig**
- **Cable for hoisting pile lengths**
- **Leader**
- **Drop hammer - see page 283**
- **Helmet**
- **Reasonably level ground surface**

Typical Data:
- **Load range** - 200 to 1,000 kN
- **Length range** - 7.000 to 18.000
- **Size range** - 250 x 250 up to 450 x 450

Splicing of pile lengths is difficult unless particular pile type has a special splicing joint collar.
Preformed Concrete Piles – jointing with a peripheral steel splicing collar as shown on the preceding page is adequate for most concentrically or directly loaded situations. Where very long piles are to be used and/or high stresses due to compression, tension and bending from the superstructure or the ground conditions are anticipated, the four or eight lock pile joint [AARSLEFF PILING] may be considered.

Pile dimensions (mm)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Possible no. of locks per joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 × 250, 300 × 300.</td>
<td>4</td>
</tr>
<tr>
<td>350 × 350 and 400 × 400</td>
<td></td>
</tr>
<tr>
<td>350 × 350, 400 × 400</td>
<td>8</td>
</tr>
<tr>
<td>and 450 × 450</td>
<td></td>
</tr>
</tbody>
</table>
Steel Box and ‘H’ Sections ~ standard steel sheet pile sections can be used to form box section piles whereas the ‘H’ section piles are cut from standard rolled sections. These piles are percussion driven and are used mainly in connection with marine structures.

Typical Examples ~

![pile examples](image)

Typical Data:
- **load range** - box piles 300 to 1500 kN
 bearing piles 300 to 1700 kN
- **length range** - all types up to 36,000
- **size range** - various sizes and profiles available

Steel Screw Piles ~ rotary driven and used for dock and jetty works where support at shallow depths in soft silts and sands is required.

Typical Example ~

![screw pile](image)

Typical Data:
- **load range** - 400 to 3000 kN
- **length range** - up to 24,000
- **size range** - shafts 150 to 350 mm dia.
 overall blades 600 to 1200
Steel Tube Piles ~ used on small to medium-size contracts for marine structures and foundations in soft subsoils over a suitable bearing strata. Tube piles are usually bottom driven with an internal drop hammer. The loading can be carried by the tube alone but it is usual to fill the tube with mass concrete to form a composite pile. Reinforcement, except for pile cap bonding bars, is not normally required.

Typical Example [BSP Cased Pile]~

Typical Data:
- Load range: 300 to 1500 kN
- Length range: up to 24.000 but can be extended by welding on extra lengths
- Diameter range: 250 to 750
Partially Preformed Piles - these are composite piles of precast concrete and in-situ concrete or steel and in-situ concrete (see page 279). These percussion-driven piles are used on medium to large contracts where bored piles would not be suitable owing to running water or very loose soils.

Typical Example (West’s Shell Pile)

- Piling rig
- Power unit
- Reasonably level ground surface
- Pile located between pair of steel leader tubes
- Helmet connected to steel mandrel
- Access platform on leader tube
- Drop hammer
- Cable for hoisting pile shells
- Typical Pile Details:
 - Polypropylene reinforced concrete shells
 - Steel jointing band
 - Reinforcement to design
 - In-situ concrete filling to core
 - Steel jointing band

Typical Data:
- Load range - 300 to 1200 kN
- Length range - up to 30,000 mm
- Diameter range - 380 to 500 mm
Driven In-situ Piles ~ used on medium to large contracts as an alternative to preformed piles particularly where final length of pile is a variable to be determined on site.

Typical Example [Franki Driven In-situ Pile] ~

1. DRIVING TUBE
- Tube is withdrawn as hammer compacts concrete
- Charges of semi-dry concrete
- Reinforcement to design

2. FORMING ENLARGED TOE
- The drawn steel tube is supported in the leaders of a piling rig or frame during the formation of the pile

3. FORMING PILE SHAFT
- Reinforcement inside of reinforcement cage
- Drop hammer operates inside of reinforcement cage

Typical Data:
- Load range - 300 to 1300 kN
- Length range - up to 18,000 mm
diameter range - 300 to 600 mm
Cast In-situ Piles ~ an alternative to the driven in-situ piles (see page 281)

Typical Example [Vibro Cast In-situ Pile] ~

1. **DRIVING TUBE**
 - steel tube top driven to required depth or set
 - steel tube supported in the leaders of a piling rig or frame during pile formation
 - cast iron driving shoe

2. **FORMING PILE SHAFT**
 - tube is raised by reverse action of hammer as concrete is placed
 - reinforcement to design
 - concrete is tamped by means of rapid up and down blows from hammer as the steel tube is withdrawn
 - in-situ concrete forced into weak pockets in the soil by tamping action of tube
 - driving shoe left in

Typical Data:
- load range - 300 to 1300 kN
- length range - up to 18,000
- diameter range - 300 to 600 mm
Piling Hammers ~ these are designed to deliver an impact blow to the top of the pile to be driven. The hammer weight and drop height is chosen to suit the pile type and nature of subsoil(s) through which it will be driven. The head of the pile being driven is protected against damage with a steel helmet which is padded with a sand bed or similar material and is cushioned with a plastic or hardwood block called a dolly.

Drop Hammers ~ these are blocks of iron with a rear lug(s) which locate in the piling rig guides or leaders and have a top eye for attachment of the winch rope. The number of blows which can be delivered with a free fall of 1·200 to 1·500 ranges from 10 to 20 per minute. The weight of the hammer should be not less than 50% of the concrete or steel pile weight and 1 to 1·5 times the weight of a timber pile.

Single Acting Hammers ~ these consist of a heavy falling cylinder raised by steam or compressed air sliding up and down a fixed piston. Guide lugs or rollers are located in the piling frame leaders to maintain the hammer position relative to the pile head. The number of blows delivered ranges from 36 to 75 per minute with a total hammer weight range of 2 to 15 tonnes.
Double Acting Hammers ~ these consist of a cast iron cylinder which remains stationary on the pile head whilst a ram powered by steam or compressed air for both up and down strokes delivers a series of rapid blows which tends to keep the pile on the move during driving. The blow delivered is a smaller force than that from a drop or single acting hammer. The number of blows delivered ranges from 95 to 300 per minute with a total hammer weight range of 0.7 to 6.5 tonnes. Diesel powered double acting hammers are also available.

Diesel Hammers ~ these are self-contained hammers which are located in the leaders of a piling rig and rest on the head of the pile. The driving action is started by raising the ram within the cylinder which activates the injection of a measured amount of fuel. The free-falling ram compresses the fuel above the anvil causing the fuel to explode and expand resulting in a downward force on the anvil and upward force which raises the ram to recommence the cycle which is repeated until the fuel is cut off. The number of blows delivered ranges from 40 to 60 per minute with a total hammer weight range of 1.0 to 4.5 tonnes.
Vibrating Hammer ~ used with preformed displacement piles driven into clay, sand or gravel subsoils.

Application ~ unit suspended by cable from a crane, positioned and secured to the top of the pile. Steel pipe, H section and sheet pile profiles are most suited to this procedure.

Function ~ two electric motors are used to propel eccentric rotors in opposing directions. The vibrations generated combine with the weight of the unit to transmit through the pile. This breaks down the subsoils resistance to shear and enables the pile to penetrate. Resistance can be reduced by water jetting at the toe of the pile.

Advantages ~ relatively silent in operation, a considerable benefit in built-up areas. Use of electricity is non-polluting in the immediate site area. No impact, therefore pile cap is unlikely to be damaged.

Disadvantage ~ electricity is not always available during preliminary ground works.
Pile Caps ~ piles can be used singly to support the load but often it is more economical to use piles in groups or clusters linked together with a reinforced concrete cap. The pile caps can also be linked together with reinforced concrete ground beams.

The usual minimum spacing for piles is:

1. Friction Piles – 1:100 or not less than \(3 \times \) pile diameter, whichever is the greater.
2. Bearing Piles – 750 mm or not less than \(2 \times \) pile diameter, whichever is the greater.

Typical Examples ~

Two Pile Cap

Three Pile Cap

Five Pile Cap

Pile Testing ~ it is advisable to test load at least one pile per scheme. The test pile should be overloaded by at least 50% of its working load and this load should be held for 24 hours. The test pile should not form part of the actual foundations. Suitable testing methods are:

1. Jacking against kentledge placed over test pile.
2. Jacking against a beam fixed to anchor piles driven in on two sides of the test pile.
Retaining Walls ~ the major function of any retaining wall is to act as an earth-retaining structure for the whole or part of its height on one face, the other being exposed to the elements. Most small height retaining walls are built entirely of brickwork or a combination of brick facing and blockwork or mass concrete backing. To reduce hydrostatic pressure on the wall from ground water an adequate drainage system in the form of weep holes should be used. Alternatively subsoil drainage behind the wall could be employed.
Small Height Retaining Walls ~ retaining walls must be stable and the usual rule of thumb for small height brick retaining walls is for the height to lie between two and four times the wall thickness. Stability can be checked by applying the middle third rule –

Typical Example of Brick Retaining Wall ~
Retaining Walls up to 6'000 high — these can be classified as medium height retaining walls and have the primary function of retaining soils at an angle in excess of the soil's natural angle of repose. Walls within this height range are designed to provide the necessary resistance by either their own mass or by the principles of leverage.

Design — the actual design calculations are usually carried out by a structural engineer who endeavours to ensure that:

1. Overturning of the wall does not occur.
2. Forward sliding of the wall does not occur.
3. Materials used are suitable and not overstressed.
4. The subsoil is not overloaded.
5. In clay subsoils slip circle failure does not occur.

The factors which the designer will have to take into account:

1. Nature and characteristics of the subsoil(s).
2. Height of water table — the presence of water can create hydrostatic pressure on the rear face of the wall, it can also affect the bearing capacity of the subsoil together with its shear strength, reduce the frictional resistance between the underside of the foundation and the subsoil and reduce the passive pressure in front of the toe of the wall.
3. Type of wall.
4. Material(s) to be used in the construction of the wall.

[Diagram: Retaining Wall Terminology]
Earth Pressures ~ these can take one of two forms, namely:

1. Active Earth Pressures ~ these are those pressures which tend to move the wall at all times and consist of the wedge of earth retained plus any hydrostatic pressure. The latter can be reduced by including a subsoil drainage system behind and/or through the wall.

2. Passive Earth Pressures ~ these are a reaction of an equal and opposite force to any imposed pressure thus giving stability by resisting movement.
Mass Retaining Walls ~ these walls rely mainly on their own mass to overcome the tendency to slide forward. Mass retaining walls are not generally considered to be economic over a height of 1.800 when constructed of brick or concrete and 1.000 high in the case of natural stonework. Any mass retaining wall can be faced with another material but generally any applied facing will not increase the strength of the wall and is therefore only used for aesthetic reasons.

Typical Brick Mass Retaining Wall Details ~

- precast concrete weathered coping stone
- bricks to have a crushing strength of not less than 20.5 MN/m² and to be laid with a mortar mix of 1:1/4:3 (cement: lime: sand) – vertical movement joints should be provided at not more than 15,000 centres
- 75mm diameter weep holes at 1.800 centres
- back of wall to be coated with bituminous paint or lined with heavy duty polythene sheet
- rubble filling behind wall and weep holes
- PVC or similar pipe lining to weep holes
- ground level
- mass concrete foundation
- dpc
- 900
- 525
- 300
- 450
- 890
- 40
- 225
- COHESIVE SUBSOIL
- 291
12 mm gap filled with mortar as work proceeds

dense engineering quality facing bricks laid in stretcher bond and tied to concrete wall with galvanised butterfly wall ties at 1:000% horizontally and 600 mm % vertically in a staggered pattern

75 mm diameter PVC sleeved weep holes at 1:800 %

ground level

mass concrete base (1:2:4/20 mm agg.) characteristic strength of 21 N/mm² at 28 days

NB. Expansion joints at 30 m %.
Cantilever Retaining Walls — these are constructed of reinforced concrete with an economic height range of 1:200 to 6:000. They work on the principles of leverage where the stem is designed as a cantilever fixed at the base and base is designed as a cantilever fixed at the stem. Several formats are possible and in most cases a beam is placed below the base to increase the total passive resistance to sliding. Facing materials can be used in a similar manner to that shown on page 292.
Formwork ~ concrete retaining walls can be cast in one of three ways ~ full height; climbing (page 295) or against earth face (page 296).

Full Height Casting ~ this can be carried out if the wall is to be cast as a free-standing wall and allowed to cure and gain strength before the earth to be retained is backfilled behind the wall. Considerations are the height of the wall, anticipated pressure of wet concrete, any strutting requirements and the availability of suitable materials to fabricate the formwork. As with all types of formwork a traditional timber format or a patent system using steel forms could be used.

Typical Details ~

- recoverable bolt and plate washer
- struts - timber or adjustable steel as required
- softwood walings in pairs
- framed plywood formwork panels
- alternative wall tie - greased spacer tube with through bolt
- 75mm high kicker
- reinforcement omitted for clarity

wall thickness
plastic or hardwood cones - length equal to concrete cover over reinforcement
high tensile steel coil
wall tie (left in)

Procedure:
1. Erect one form side, align, plumb and check.
2. Insert and position reinforcement cage.
3. Erect other form side, align, plumb and check.
4. Cast wall.

formation level

base cast and cured
75mm thick blinding
Climbing Formwork or Lift Casting ~ this method can be employed on long walls, high walls or where the amount of concrete which can be placed in a shift is limited.

Typical Details ~

100 x 50 softwood studs in pairs fixed to back of wall forms at 900 %

1.200 high x 2.400 long plywood faced framed wall forms

raking struts to be used as required

wall thickness

bolts and spacer tubes or steel coil wall ties

75mm high kicker

base cast and cured

reinforcement omitted for clarity

75mm thick blinding

STAGE ONE OR FIRST LIFT

bolts and spacer tubes or steel coil wall ties

first lift forms reversed

raking struts not required after first lift

first lift of wall cast and cured sufficiently to support second lift formwork

b Bolt holes from first lift no longer required to be made good

hardwood folding wedges

through bolt fixings

NB. All subsequent lifts as for second lift.

wall can be constructed using climbing shoes instead of studs

STAGE TWO OR SECOND LIFT
Casting Against Earth Face ~ this method can be an adaptation of the full height or climbing formwork systems. The latter uses a steel wire loop tie fixing to provide the support for the second and subsequent lifts.

Typical Details ~
100 x 50 x 2.325 long studs in pairs fixed to back of wall forms at 900 mm

recoverable bolt and washer

1.200 high x 2.400 long plywood faced framed wall forms

struts as required

sole plate fixed to base

earth face
plastic or hardwood cones

high tensile steel wire loop tie

75 mm high kicker

base cast and cured

STAGE ONE OR FIRST LIFT

first lift wall form reversed

bolt holes from first lift no longer required to be made good

hardwood folding wedges

formation level

STAGE TWO OR SECOND LIFT

first lift of wall cast and cured to support second lift formwork

steel wire loop ties cast in

NB. All subsequent lifts as shown for second lift.
Masonry units – these are an option where it is impractical or cost-ineffective to use temporary formwork to in-situ concrete. Exposed brick or blockwork may also be a preferred finish. In addition to being a structural component, masonry units provide permanent formwork to reinforced concrete poured into the voids created by:

- Quetta bonded standard brick units, OR
- Stretcher bonded standard hollow dense concrete blocks.

Reinforced quetta bonded brickwork

Elevation, as Flemish bond

1 ½ B or 327 mm

Plan

Reinforced hollow concrete blocks

Steel bar reinforcement

Elevation

250 mm

Plan

Concrete filling in voids

Standard hollow concrete block to BS 6073-2

440 mm

215 mm

60-250 mm

Purpose-made hollow block for use with additional horizontal reinforcement

Construction – a reinforced concrete base is cast with projecting steel bars accurately located for vertical continuity. The wall may be built solid, e.g. Quetta bond, with voids left around the bars for subsequent grouting. Alternatively, the wall may be of wide cavity construction, where the exposed reinforcement is wrapped in ‘denso’ grease tape for protection against corrosion. Steel bars are threaded at the top to take a tensioning nut over a bearing plate.

Staged post-tensioning to high masonry retaining walls
PD 6697: Recommendations to BS EN 1996-1-1.
Crib Retaining Walls – a system of precast concrete or treated timber components comprising headers and stretchers which interlock to form a three-dimensional framework. During assembly the framework is filled with graded stone to create sufficient mass to withstand ground pressures.

Principle –

- **Batter**: 1:4 timber, 1:6–8 concrete
- **Upper ground**
- **Headers**
- **Stretcher**
- **With joints staggered**
- **Graded granular fill within cribs and up to 1 m behind wall**
- **Lower ground**
- **Concrete foundation with surface of incline finished rough**
- **Subsoil drain**

NB. height limited to 10 m with timber.

Components –

- **Timber preserved with copper/chrome/arsenic**
- **Reinforced concrete, sulphate resisting 50 N/mm²**
- **Stretcher 100×50 mm**
 - Up to 2.2 m long
- **Header 100×50 mm**
 - 0.6–1.4 m long
 - Spaced at 550 mm
- **Stretcher**
- **Header**
- **Stretcher 1.2 or 1.5 m**
- **Header 300×125 mm**
 - 0.65, 1.2 or 1.6 m long
Soil Nailing — a cost effective geotechnic process used for retaining large soil slopes, notably highway and railway embankments.

Function ~ after excavating and removing the natural slope support, the remaining wedge of exposed unstable soil is pinned or nailed back with tendons into stable soil behind the potential slip plane.

Types of Soil Nails or Tendons:

• Solid deformed steel rods up to 50 mm in diameter, located in boreholes up to 100 mm in diameter. Cement grout is pressurised into the void around the rods.
• Hollow steel, typically 100 mm diameter tubes with an expendable auger attached. Cement grout is injected into the tube during boring to be ejected through purpose-made holes in the auger.
• Solid glass reinforced plastic (GRP) with resin grouts.

Embankment Treatment ~ the exposed surface is faced with a plastic coated wire mesh to fit over the ends of the tendons. A steel head plate is fitted over and centrally bolted to each projecting tendon, followed by spray concreting to the whole face.

Typical Application ~

![Diagram](image)
Gabion ~ a type of retaining wall produced from individual rectangular boxes made from panels of wire mesh, divided internally and filled with stones. These units are stacked and overlapped (like stretcher bonded masonry) and applied in several layers or courses to retained earth situations. Typical sizes, 1.0m long x 0.5m wide x 0.5m high, up to 4.0m long x 1.0m wide x 1.0m high.

Mattress ~ unit fabrication is similar to a gabion but of less thickness, smaller mesh and stone size to provide some flexibility and shaping potential. Application is at a much lower incline. Generally used next to waterways for protection against land erosion where tidal movement and/or water level differentials could scour embankments. Typical sizes, 3.0m long x 2.0m wide x 0.15m thick, up to 6.0m long x 2.0m wide x 0.3m thick.
Design of Retaining Walls ~ this should allow for the effect of hydrostatics or water pressure behind the wall and the pressure created by the retained earth (see page 290). Calculations are based on a 1m unit length of wall, from which it is possible to ascertain:

1. The resultant thrust
2. The overturning or bending moment

\[P = \text{resultant thrust} \]
\[w = \text{density of material} \]
\[h = \text{height of wall} \]
\[\theta = \text{soil angle of repose (see page 322)} \]

\[P(\text{liquid}) = \frac{wh^2}{2} \]
\[P(\text{earth}) = \frac{wh^2}{2} \times \frac{1-\sin \theta}{1+\sin \theta} \text{ [Rankine's formula]} \]

Pressure at base (water) = \(wh \text{ kg/m}^2 \)
Pressure at base (earth) = \(\frac{wh(1-\sin \theta)}{1+\sin \theta} \text{ kg/m}^2 \)

\(P \), the resultant thrust, will act through the centre of gravity of the pressure diagram, i.e. at \(h/3 \).

The overturning moment due to water is therefore:

\[\frac{wh^2}{2} \times \frac{h}{3} \text{ or } \frac{wh^3}{6} \]

and for earth:

\[\frac{wh^2}{2} \times \frac{1-\sin \theta}{1+\sin \theta} \times \frac{h}{3} \text{ or } \frac{wh^3}{6} \times \frac{1-\sin \theta}{1+\sin \theta} \]

Typical example

- density of water = 1000 kg/m\(^3\)
- density of soil = 1500 kg/m\(^3\)
- soil angle of repose = 30\(^\circ\) (sand)

For water:

\[p = \frac{wh^2}{2} = \frac{1000 \times (3.3)^2}{2} = 5445 \text{ kg} \]

NB. \(kg \times \text{gravity} = \text{Newtons} \)

Therefore, 5445 kg \(\times \) 9.81 = 53.42 kN

The overturning or bending moment will be:

\[P \times \frac{h}{3} = 53.42 \text{ kN} \times 1.1 \text{ m} = 58.8 \text{ kNm} \]

For earth:

\[p = \frac{wh^2}{2} \times \frac{1-\sin \theta}{1+\sin \theta} \]
\[p = \frac{1500 \times (3.3)^2}{2} \times \frac{1-\sin 30^\circ}{1+\sin 30^\circ} = 2723 \text{ kg or 26.7 kN} \]

The overturning or bending moment will be:

\[P \times \frac{h}{3} = 26.7 \text{ kN} \times 1.1 \text{ m} = 29.4 \text{ kNm} \]
A graphical design solution, to determine the earth thrust \(P \) behind a retaining wall. Data from previous page:

\[
\begin{align*}
 h &= 3.300 \text{ m} \\
 \theta &= 30^\circ \\
 w &= 1500 \text{ kg/m}^3
\end{align*}
\]

Wall height is drawn to scale and plane of repose plotted. The wedge section is obtained by drawing the plane of rupture through an angle bisecting the plane of repose and vertical back of the wall. Dimension `y` can be scaled or calculated:

\[
\text{Tangent } x = \frac{y}{3.3} \quad x = 30^\circ \quad \text{and} \quad \tan 30^\circ = 0.5774
\]

therefore, \(y = 3.3 \times 0.5774 = 1.905 \text{ m} \)

Area of wedge section = \(\frac{3.3^2}{2} \times 1.905 \text{ m} = 3.143 \text{ m}^2 \)

Volume of wedge per metre run of wall = \(3.143 \times 1 = 3.143 \text{ m}^3 \)

Weight \(= 3.143 \times 1500 = 4715 \text{ kg} \)

Vector line A † B is drawn to a scale through centre of gravity of wedge section, line of thrust and plane of rupture to represent 4715 kg.

Vector line B † C is drawn at the angle of earth friction (usually same as angle of repose, i.e. 30° in this case), to the normal to the plane of rupture until it meets the horizontal line C † A.

Triangle ABC represents the triangle of forces for the wedge section of earth, so C † A can be scaled at 2723 kg to represent \(P \), the earth thrust behind the retaining wall.
Open Excavations ~ one of the main problems which can be encountered with basement excavations is the need to provide temporary support or timbering to the sides of the excavation. This can be intrusive when the actual construction of the basement floor and walls is being carried out. One method is to use battered excavation sides cut back to a safe angle of repose thus eliminating the need for temporary support works to the sides of the excavation.

In economic terms the costs of plant and manpower to cover the extra excavation, backfilling and consolidating must be offset by the savings made by omitting the temporary support works to the sides of the excavation. The main disadvantage of this method is the large amount of free site space required.
Perimeter Trench Excavations — in this method a trench wide enough for the basement walls to be constructed is excavated and supported with timbering as required. It may be necessary for runners or steel sheet piling to be driven ahead of the excavation work. This method can be used where weak subsoils are encountered so that the basement walls act as permanent timbering whilst the mound or dumpling is excavated and the base slab cast. Perimeter trench excavations can also be employed in firm subsoils when the mechanical plant required for excavating the dumpling is not available at the right time.

Typical Details
- Runners or sheet piling driven ahead of excavation
- Struts and walings installed as excavation work proceeds
- Excavation carried out between struts using backacting machine

STAGE 1 - EXCAVATION OF PERIMETER TRENCH
- Trench excavated to formation level — timbering installed as required
- Ground level
- Middle mound or dumpling
- Formation level

STAGE 2 - CONSTRUCTION OF BASEMENT WALLS
- Ground level
- Dumping excavated using a face shovel or large capacity backactor
- Timbering repositioned as work proceeds
- Wall cast in stages or lifts
- Formation level

STAGE 3 - CONSTRUCTION OF BASEMENT SLAB
- Wall completed and timbering removed or left in according to design or subsoil conditions
- Base slab cast and structurally joined to walls
Complete Excavation ~ this method can be used in firm subsoils where the centre of the proposed basement can be excavated first to enable the basement slab to be cast thus giving protection to the subsoil at formation level. The sides of excavation to the perimeter of the basement can be supported from the formation level using raking struts or by using raking struts pitched from the edge of the basement slab.

Typical Details ~

- face timbering left projecting as safety barrier
- 150 x 150 raking struts at 2·000 c/c
- 150 x 150 puncheons at 2·000 c/c
- 150 x 150 walings
- 225 x 38 binders to both sides
- 150 x 75 sole piece

RAKING STRUTS FROM FORMATION LEVEL

- face timbering left projecting as safety barrier
- 150 x 150 raking struts at 2·000 c/c
- 150 x 150 puncheons at 2·000 c/c
- 150 x 150 walings
- 225 x 38 binders to both sides
- 225 x 75 sole piece bolted to slab

RAKING STRUTS FROM BASEMENT SLAB
Excavating Plant — the choice of actual pieces of plant to be used in any construction activity is a complex matter taking into account many factors. Specific details of various types of excavators are given on pages 209 to 213. At this stage it is only necessary to consider basic types for particular operations. In the context of basement excavation two forms of excavator could be considered.

1. Backactors — these machines are available as cable rigged or hydraulic excavators suitable for trench and bulk excavating. Cable rigged backactors are usually available with larger bucket sizes and deeper digging capacities than the hydraulic machines but these have a more positive control and digging operation and are also easier to operate.

![Diagram of Backactor](image)

2. Face Shovels — these are robust machines designed to excavate above their own wheel or track level and are suitable for bulk excavation work. In basement work they will require a ramp approach unless they are to be lifted out of the excavation area by means of a crane. Like backactors face shovels are available as cable rigged or hydraulic machines.

![Diagram of Face Shovel](image)
Basement Construction - in the general context of buildings a basement can be defined as a storey which is below the ground storey and is therefore constructed below ground level. Most basements can be classified into one of three groups:

1. Retaining Wall and Raft Basements - this is the general format for basement construction and consists of a slab raft foundation which forms the basement floor and helps to distribute the structural loads transmitted down the retaining walls.

2. Box and Cellular Raft Basements - similar method to above except that internal walls are used to transmit and spread loads over raft as well as dividing basement into cells.

3. Piled Basements - the main superstructure loads are carried to the basement floor level by columns where they are finally transmitted to the ground via pile caps and bearing piles. This method can be used where low bearing capacity soils are found at basement floor level.
Deep Basement Construction ~ basements can be constructed within a cofferdam or other temporary supported excavation (see Basement Excavations on pages 304 to 306) up to the point when these methods become uneconomic, unacceptable or both due to the amount of necessary temporary support work. Deep basements can be constructed by installing diaphragm walls within a trench and providing permanent support with ground anchors or by using the permanent lateral support given by the internal floor during the excavation period (see next page). Temporary lateral support during the excavation period can be provided by lattice beams spanning between the diaphragm walls (see next page).

NB. vertical ground anchors installed through the lowest floor can be used to overcome any tendency to flotation during the construction period.
Top down construction
Basement Construction with Permanent Lateral Support
- ground floor slab and beams cast against earth and in trenches prior to excavation work for basement to provide permanent lateral support at top edge of walls
- access hole for men and materials
- intermediate slab and beams cast before next stage of excavation
- excavation in progress
- formation level

Basement Construction with Temporary Lateral Support
- steel lattice beams in one or two directions fixed to top edge of diaphragm walls to provide temporary lateral support
- future floor slabs and beams provide permanent lateral support
- excavation in progress
- formation level
Top Down Construction with Superstructure ~ an extension of the principles outlined on the previous page where basement floors are constructed as excavation proceeds. Applied to construction of tall buildings, particularly in congested areas where existing buildings are in close proximity. Suited to deep basements where construction above ground can be conducted simultaneously with construction below ground, thereby optimising progress. Also suitable for underground car parks and railway stations.

Sequence Guidance (illustrated next page) ~

- Ground water controls/dewatering installed and activated (subject to sub-surface composition and water table height).
- Cast in-situ concrete diaphragm perimeter walls installed, possibly using contiguous or secant piling methods.
- Holes bored for piled foundations.
- Steel reinforcement cage positioned in boreholes.
- Load-bearing plunge columns (standard steel UC sections) lowered inside reinforcement cage.
- Boreholes concreted to ground level.
- In-situ reinforced concrete slab cast at ground level with shuttering to create suitable size opening(s) for excavation plant access. This and subsequent sub-floors act as lateral bracing to perimeter walls.
- Superstructure commences.
- Subsoil extracted through slab opening. Possible use of crane and bucket or long arm excavator. After initial soil removal, small backacters may be able to operate below ground floor slab.
- First basement formation level established and in-situ concrete floor slab cast with suitable size opening to access the next level down.
- Excavation procedure repeated to formation level of second basement floor and slab cast with access void if further sub-floors required.
- Continue until design depth and number of sub-floors is reached.
- Basement construction completed with waterproofing (tanking) and finishes.
- Continue with superstructural construction.
Top Down Construction Principles Illustrated ~

Diaphragm walls and plunge column piled foundation

Reinforced ground floor slab cast with access for excavation and commencement of superstructure

Sub-floors concreted whilst superstructure proceeds
Waterproofing Basements – basements can be waterproofed by one of three basic methods, namely:

1. Use of dense monolithic concrete walls and floor.
2. Tanking techniques (see pages 315 and 316).
3. Drained cavity system (see page 317).

Dense Monolithic Concrete – the main objective is to form a watertight basement using dense high quality reinforced or prestressed concrete by a combination of good materials, good workmanship, attention to design detail and on-site construction methods. If strict control of all aspects is employed a sound, watertight structure can be produced but it should be noted that such structures are not always water vapourproof. If the latter is desirable some waterproof coating, lining or tanking should be used. The watertightness of dense concrete mixes depends primarily upon two factors:

1. Water/cement ratio.
2. Degree of compaction.

The hydration of cement during the hardening process produces heat; therefore to prevent early stage cracking the temperature changes within the hardening concrete should be kept to a minimum. The greater the cement content the more is the evolution of heat; therefore the mix should contain no more cement than is necessary to fulfil design requirements. Concrete with a free water/cement ratio of 0.5 is watertight and although the permeability is three times more at a ratio of 0.6 it is for practical purposes still watertight but above this ratio the concrete becomes progressively less watertight. For lower water/cement ratios the workability of the mix would have to be increased, usually by adding more cement, to enable the concrete to be fully compacted.

Admixtures – if the ingredients of good design, materials and workmanship are present watertight concrete can be produced without the use of admixtures. If admixtures are used they should be carefully chosen and used to obtain a specific objective:

1. Water-reducing admixtures – used to improve workability.
2. Retarding admixtures – slow down rate of hardening.
4. Water-repelling admixtures – effective only with low water head, will not improve poor-quality or porous mixes.
5. Air-entraining admixtures – increase workability – lower water content.
Joints ~ in general these are formed in basement constructions to provide for movement accommodation (expansion joints) or to create a convenient stopping point in the construction process (construction joints). Joints are lines of weakness which will leak unless carefully designed and constructed; therefore they should be simple in concept and easy to construct.

Basement slabs ~ these are usually designed to span in two directions and as a consequence have relatively heavy top and bottom reinforcement. To enable them to fulfil their basic functions they usually have a depth in excess of 250mm. The joints, preferably of the construction type, should be kept to a minimum and if waterbars are specified they must be placed to ensure that complete compaction of the concrete is achieved.

Typical Basement Slab Joint Details

- **construction joint**
- **structural slab**
- reinforcement
- continuous through joint
- blinding
- PVC water bar laid on blinding

Basement Walls ~ joints can be horizontal and/or vertical according to design requirements. A suitable waterbar should be incorporated in the joint to prevent the ingress of water. The top surface of a kicker used in conjunction with single-lift pouring if adequately prepared by exposing the aggregate should not require a waterbar but if one is specified it should be either placed on the rear face or consist of a centrally placed mild steel strip inserted into the kicker whilst the concrete is still in a plastic state.

Typical Basement Wall Joint Details

- 150mm wide mild steel strip
- 150mm kicker
- mastic seal
- 20mm wide joint
- PVC or rubber water bar

EXPANSION JOINT

CONSTRUCTION JOINT
Mastic Asphalt Tanking ~ the objective of tanking is to provide a continuous waterproof membrane which is applied to the base slab and walls with complete continuity between the two applications. The tanking can be applied externally or internally according to the circumstances prevailing on site. Alternatives to mastic asphalt are polythene sheeting: bituminous compounds: epoxy resin compounds and bitumen laminates.

External Mastic Asphalt Tanking ~ this is the preferred method since it not only prevents the ingress of water but it also protects the main structure of the basement from aggressive sulphates which may be present in the surrounding soil or ground water.

Typical External Tanking Details ~

25 x 25 splayed chase

half brick or 100mm block protective walling in cm.mt. (1:3)

30 mm thick cement/sand grout if required to ensure good interface contact

20 mm thick vertical asphalt applied in three coats to rough concrete face

50 x 50 two coat angle fillet

150 mm 'pickup'

100mm thick mass concrete base

reinforced concrete floor slab

distribution bars

main bars

reinforced concrete basement wall

main bars

distribution bars

reinforced concrete basement slab

50mm thick cement/sand (1:3) protective screed

30mm thick horizontal asphalt applied in three coats over concrete base
Internal Mastic Asphalt Tanking — this method should only be adopted if external tanking is not possible since it will not give protection to the main structure and unless adequately loaded may be forced away from the walls and/or floor by hydrostatic pressure. To be effective the horizontal and vertical coats of mastic asphalt must be continuous.

Typical Internal Tanking Details -

- reinforced concrete floor slab
- 25 x 25 splayed chase
- reinforced concrete basement wall
- three coat asphalt collar applied over bitumen primer to extend at least 75 mm on both sides of tanking
- main bars
- distribution bars
- water bar to kicker
- 50 mm thick protective screed
- reinforced concrete basement slab
- 75 mm thick blinding
- 20 mm thick vertical asphalt applied in three coats to rough concrete face
- sleeve, duct or pipe through wall
- 50 x 50 two coat angle fillet
- 30 mm thick cement/sand grout if required to ensure good interface contact
- brick or block loading wall
- reinforced concrete loading slab
- 30 mm thick horizontal asphalt applied in three coats over concrete base

NB. Brick basement walls can be built of keyed bricks or the joints can be raked out to a depth of 20 mm to provide key for asphalt tanking.
Drained Cavity System — this method of waterproofing basements can be used for both new and refurbishment work. The basic concept is very simple in that it accepts that a small amount of water seepage is possible through a monolithic concrete wall and the best method of dealing with such moisture is to collect it and drain it away. This is achieved by building an inner non-load-bearing wall to form a cavity which is joined to a floor composed of special triangular tiles laid to falls which enables the moisture to drain away to a sump from which it is either discharged direct or pumped into the surface water drainage system. The inner wall should be relatively vapour tight or alternatively the cavity should be ventilated.

Typical Details —

TOP VIEW - HALF TILE

- 50 mm wide cavity
- Wall finish
- Damp-proof membrane
- Skirting
- Precast concrete 'Dryangle' floor tiles
- 65 mm thick screed
- Reinfroced concrete floor slab - upper laid to fall to sump

BOTTOM VIEW - STANDARD TILE

- All sides 450 mm long
- 75 mm thick blinding
Basements benefit considerably from the insulating properties of the surrounding soil. However, that alone is insufficient to satisfy the typical requirements for wall and floor U-values of 0.35 and 0.25 W/m²K, respectively.

Refurbishment of existing basements may include insulation within dry lined walls and under-the-floor screed or particle board overlay. This should incorporate an integral vapour control layer to minimise risk of condensation.

External insulation of closed cell rigid polystyrene slabs is generally applied to new construction. These slabs combine low thermal conductivity with low water absorption and high compressive strength. The external face of insulation is grooved to encourage moisture run-off. It is also filter faced to prevent clogging of the grooves. Backfill is granular.

Typical application:

Note: reinforcement in concrete omitted, see details on previous pages.

Tables and calculation methods to determine heat energy transfer for basements are provided in BS EN ISO 13370: Thermal performance of buildings. Heat transfer via the ground. Calculation methods.
Excavation ~ to hollow out ~ in building terms to remove earth to form a cavity in the ground.

Types of Excavation ~

Oversite - the removal of topsoil (Building Regulations requirement).

depth varies from site to site but is usually in a 150 to 300mm range. Topsoil contains plant life, animal life and decaying matter which makes the soil compressible and therefore unsuitable for supporting buildings.

Reduce Level - carried out below over-site level to form a level surface on which to build and can consist of both cutting and filling operations. The level to which the ground is reduced is called the formation level.

NB. Water in Excavations ~ this should be removed since it can:
1. Undermine sides of excavation.
2. Make it impossible to adequately compact bottom of excavation to receive foundations.
3. Cause puddling which can reduce the bearing capacity of the subsoil.
Trench Excavations ~ narrow excavations primarily for strip foundations and buried services – excavation can be carried out by hand or machine.

Typical Examples ~

Disadvantage~ extra cost of over-excavating and extra backfilling.
Advantage~ no temporary support required to sides of excavation.

Pier Holes ~ isolated pits primarily used for foundation pads for columns and piers or for the construction of soakaways.

Disadvantage~ sides of excavation may require some degree of temporary support.
Advantage~ minimum amount of soil removed and therefore minimum amount of backfilling.

NB. Legislation affecting safety in excavation is contained in the Construction (Design and Management) Regulations.
Excavations up to 2.5 m deep — Processes

Site Clearance and Removal of Topsoil —
On small sites this could be carried out by manual means using handheld tools such as picks, shovels and wheelbarrows.

On all sites mechanical methods could be used, the actual plant employed being dependent on factors such as volume of soil involved, nature of site and time elements.

Reduced Level Excavations —
On small sites — hand processes as given above.
On all sites mechanical methods could be used dependent on factors given above.

Trench and Pit Excavations —
On small sites — hand processes as given above but if depth of excavation exceeds 1.200 some method of removing spoil from the excavation will have to be employed.

On all sites mechanical methods could be used dependent on factors given above.

On large sites a trenching machine could be used
All subsoils have different abilities in remaining stable during excavation works. Most will assume a natural angle of repose or rest unless given temporary support. The presence of ground water apart from creating difficult working conditions can have an adverse effect on the subsoil's natural angle of repose.

Typical Angles of Repose ~
Excavations cut to a natural angle of repose are called battered

- **DRAINED CLAY**
- **WET CLAY**
- **GRAVEL & DRY SAND**
- **WET SAND**

Factors for Temporary Support of Excavations ~

- stability of subsoil
- nearness of surcharges such as buildings and vehicles
- can excavation be completed before any temporary support is required?
- depth of excavation
- water table level

Time factors such as period during which excavation will remain open and the time of year when work is carried out.

The need for an assessment of risk with regard to the support of excavations and protection of people within is a legal responsibility under the Health and Safety at Work, etc. Act and the Construction (Design and Management) Regulations.
Temporary Support ~ in the context of excavations this is called timbering irrespective of the actual materials used. If the sides of the excavation are completely covered with timbering it is known as close timbering whereas any form of partial covering is called open timbering.

An adequate supply of timber or other suitable material must be available and used to prevent danger to any person employed in an excavation from a fall or dislodgement of materials forming the sides of an excavation.

A suitable barrier or fence must be provided to the sides of all excavations or alternatively they must be securely covered.

Materials must not be placed near to the edge of any excavation, nor must plant be placed or moved near to any excavation so that persons employed in the excavation are endangered.

Typical Example ~

- 225 x 50 poling boards as open timbering
- 100 x 100 walings
- 100 x 100 struts at 1.800 c/c
- 100 x 100 puncheons at 1.800 c/c
- 225 x 75 sole piece

Spoil heap barrier at least 600 mm high

FIRM SUBSOIL

Adjustable metal struts to BS 4074 could be used if distance between walings is not more than 1.670

For further details and data see next page
Poling Board ~ a form of temporary support which is placed in position against the sides of excavation after the excavation work has been carried out. Poling boards are placed at centres according to the stability of the subsoils encountered.

Runner ~ a form of temporary support which is driven into position ahead of the excavation work either to the full depth or by a drive-and-dig technique where the depth of the runner is always lower than that of the excavation.

Trench Sheeting ~ form of runner made from sheet steel with a trough profile - can be obtained with a lapped joint or an interlocking joint.

Water ~ if present or enters an excavation, a pit or sump should be excavated below the formation level to act as a collection point from which the water can be pumped away.

Typical Example ~

225 x 50 runners as close timbering left projecting to form the barrier

100 x 100 walings

100 x 100 struts at 1.800 c/c

100 x 100 puncheons at 1.800 c/c

225 x 75 sole piece

All timbering sizes shown are typical - actual sizes should be selected from design charts or calculated from first principles.

Loose or Wet Subsoil
Concrete ~ a mixture of cement + fine aggregate + coarse aggregate + water in controlled proportions and of a suitable quality.

Cement ~ powder produced from clay and chalk or limestone. In general, most concrete is made with ordinary or rapid hardening Portland cement, both types being manufactured to the recommendations of BS EN 197-1. Ordinary Portland cement is adequate for most purposes but has a low resistance to attack by acids and sulphates. Rapid hardening Portland cement does not set faster than ordinary Portland cement but it does develop its working strength at a faster rate. For a concrete which must have an acceptable degree of resistance to sulphate attack, the quantity of tricalcium aluminate is reduced during the manufacture of Portland cement (4% instead of 10% in OPC). BS EN 15743 contains reference to this type of sulphate-resisting cement.

Aggregates ~ shape, surface texture and grading (distribution of particle sizes) are factors which influence the workability and strength of a concrete mix. Fine aggregates are generally regarded as those materials which pass through a 4mm sieve whereas coarse aggregates are retained on a 4mm sieve. Dense aggregates have a density of more than 1200kg/m³ for coarse aggregates and more than 1250kg/m³ for fine aggregates. These are detailed in BS EN 12620: Aggregates for concrete. Lightweight aggregates include clinker; foamed or expanded blastfurance slag and exfoliated and expanded materials such as vermiculite, perlite, clay and sintered pulverised fuel ash to BS EN 13055-1.

Water ~ must be clean and free from impurities which are likely to affect the quality or strength of the resultant concrete. Pond, river, canal and sea water should not be used and only water which is fit for drinking should be specified.
Cement — whichever type of cement is being used it must be properly stored on site to keep it in good condition. The cement must be kept dry since contact with any moisture whether direct or airborne could cause it to set. A rotational use system should be introduced to ensure that the first batch of cement delivered is the first to be used.

Typical Storage Methods —
- polythene or similar waterproof cover
- stored cement bags — total height not more than 1000
- well fitted lockable doors
- galv. steel sides
- adjustable legs and bearing plate
- watertight and fireproof ‘shed’
- cover weighted down around edges
- timber bearers or sleepers

SMALL CONTRACTS

MEDIUM SIZE CONTRACTS

LARGE CONTRACTS — for bagged cement watertight container as above. For bulk delivery loose cement, a cement storage silo.

Aggregates — essentials of storage are to keep different aggregate types and/or sizes separate, store on a clean, hard, free draining surface and to keep the stored aggregates clean and free of leaves and rubbish.

- keep constant check on moisture content of stored materials
- retaining and separating walls of bulk timbers or similar materials
- hard, clean surface which drains away from stored aggregates
Concrete Batching ~ a batch is one mixing of concrete and can be carried out by measuring the quantities of materials required by volume or weight. The main aim of both methods is to ensure that all consecutive batches are of the same standard and quality.

Volume Batching ~ concrete mixes are often quoted by ratio such as 1:2:4 (cement : fine aggregate or sand : coarse aggregate). Cement weighing 50 kg has a volume of 0.033 m³; therefore for the above mix 2 × 0.033 (0.066 m³) of sand and 4 × 0.033 (0.132 m³) of coarse aggregate is required. To ensure accurate amounts of materials are used for each batch a gauge box should be employed, its size being based on convenient handling. Ideally a batch of concrete should be equated to using 50 kg of cement per batch. Assuming a gauge box 300 mm deep and 300 mm wide with a volume of half the required sand the gauge box size would be – volume = length × width × depth = length × 300 × 300.

length = \frac{volume}{width \times depth} = \frac{0.033}{0.3 \times 0.3} = 0.366 m

For the above given mix fill gauge box once with cement, twice with sand and four times with coarse aggregate.

An allowance must be made for the bulking of damp sand which can be as much as 33 \frac{1}{3} %. General rule of thumb unless using dry sand: allow for 25% bulking.

Materials should be well mixed dry before adding water.
Weight or Weigh Batching ~ this is a more accurate method of measuring materials for concrete than volume batching since it reduces considerably the risk of variation between different batches. The weight of sand is affected very little by its dampness which in turn leads to greater accuracy in proportioning materials. When loading a weighing hopper the materials should be loaded in a specific order:

1. Coarse aggregates – tend to push other materials out and leave the hopper clean.
2. Cement – this is sandwiched between the other materials since some of the fine cement particles could be blown away if cement is put in last.
3. Sand or fine aggregates – put in last to stabilise the fine lightweight particles of cement powder.

Typical Densities ~ cement † 1440 kg/m³ sand † 1600 kg/m³ coarse aggregate † 1440 kg/m³

Water/Cement Ratio ~ water in concrete has two functions:
1. Starts the chemical reaction which causes the mixture to set into a solid mass.
2. Gives the mix workability so that it can be placed, tamped or vibrated into the required position.

Very little water is required to set concrete (approximately 0.2 w/c ratio) and the surplus evaporates leaving minute voids; therefore the more water added to the mix to increase its workability the weaker is the resultant concrete. Generally w/c ratios of 0.4 to 0.5 are adequate for most purposes. See next page.
Free Water ~ water on the surface of aggregates where stored in stock piles plus water added during the mixing process. Does not include any water that is absorbed by the aggregate.

Free Water/Cement Ratio ~ a high w/c ratio increases the workability of concrete. This may be convenient for placing but it should be controlled in order to regulate the final concrete strength.

Note: The w/c ratio is found by dividing the weight of water in a batch by the weight of cement. E.g. If a batch contains 50 kg of water and 100 kg of cement, the w/c ratio is 0.5.
Concrete — a composite with many variables, represented by numerous gradings which indicate components, quality and manufacturing control.

Grade mixes: C7.5, C10, C15, C20, C25, C30, C35, C40, C45, C50, C55 and C60; F3, F4 and F5; IT2, IT2.5, and IT3.

C = Characteristic compressive
F = Flexural
IT = Indirect tensile

NB. If the grade is followed by a ‘P’, e.g. C30P, this indicates a prescribed mix (see below).

Grades C7.5 and C10 - Unreinforced plain concrete.
Grades C15 and C20 - Plain concrete or if reinforced containing lightweight aggregate.
 Grades C25 - Reinforced concrete containing dense aggregate.
Grades C30 and C35 - Post-tensioned reinforced concrete.
Grades C40 to C60 - Pre-tensioned reinforced concrete.

Categories of mix:

1. Prescribed Mix — components are predetermined (to a recipe) to ensure strength requirements. Variations exist to allow the purchaser to specify particular aggregates, admixtures and colours. All grades permitted.
2. Standard Prescribed Mix — applicable to minor works such as house construction, particularly where weight or volume batching is used for small quantities. See next page for standard (ST) mixes with C30 strength class concrete.
3. Designed Mix — concrete is specified to an expected performance. Criteria can include characteristic strength, durability and workability, to which a concrete manufacturer will design and supply an appropriate mix. All grades permitted.
4. Designated Mix — selected for specific applications. General (GEN) graded 0-4, 7.5-25 N/mm² for foundations, floors and external works. Foundations (FND) graded 2, 3, 4A and 4B, 35N/mm² mainly for sulphate resisting foundations.
 Paving (PAV) graded 1 or 2, 35 or 45 N/mm² for roads and drives.
 Reinforced (RC) graded 30, 35, 40, 45 and 50 N/mm² mainly for pre-stressing.

See also BS EN 206-1: Concrete. Specification, performance, production and conformity, and BS’s 8500-1 and -2: Concrete.
Standard prescribed mixes for site batching are graded for concrete with a characteristic compressive strength of 30 N/mm² at 28 days. Compressive strength is achieved by laboratory testing sample cubes as detailed on page 136.

Weight Batched Proportions ~

<table>
<thead>
<tr>
<th>Standard prescribed mix</th>
<th>Consistence class (slump)</th>
<th>Cement bag (kg)</th>
<th>Fine agg. (kg)</th>
<th>Coarse agg. (kg) max. 20 mm</th>
<th>Mix ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>S1</td>
<td>25</td>
<td>84</td>
<td>126</td>
<td>1:3.35:5.02</td>
</tr>
<tr>
<td>ST2</td>
<td>S2</td>
<td>25</td>
<td>72</td>
<td>107</td>
<td>1:2.87:4.28</td>
</tr>
<tr>
<td>ST2</td>
<td>S3</td>
<td>25</td>
<td>65</td>
<td>97</td>
<td>1:2.58:3.88</td>
</tr>
<tr>
<td>ST2</td>
<td>S4</td>
<td>25</td>
<td>68</td>
<td>83</td>
<td>1:2.72:3.30</td>
</tr>
<tr>
<td>ST3</td>
<td>S2</td>
<td>25</td>
<td>63</td>
<td>95</td>
<td>1:2.52:3.80</td>
</tr>
<tr>
<td>ST4</td>
<td>S2</td>
<td>25</td>
<td>56</td>
<td>83</td>
<td>1:2.23:3.33</td>
</tr>
<tr>
<td>ST5</td>
<td>S2</td>
<td>25</td>
<td>48</td>
<td>72</td>
<td>1:1.92:2.88</td>
</tr>
</tbody>
</table>

Volume Batched Proportions~

<table>
<thead>
<tr>
<th>Standard prescribed mix</th>
<th>Consistency class (slump)</th>
<th>Cement bag (kg)</th>
<th>Fine agg. (litres)</th>
<th>Coarse agg. (litres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>S1</td>
<td>25</td>
<td>60</td>
<td>85</td>
</tr>
<tr>
<td>ST2</td>
<td>S2</td>
<td>25</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>ST2</td>
<td>S3</td>
<td>25</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>ST2</td>
<td>S4</td>
<td>25</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>ST3</td>
<td>S2</td>
<td>25</td>
<td>45</td>
<td>65</td>
</tr>
</tbody>
</table>

Consistency Class ~ this refers to the amount of water in the mix, affecting workability and final strength. See page 135.

<table>
<thead>
<tr>
<th>Consistency class</th>
<th>Slump (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>10 - 40</td>
</tr>
<tr>
<td>S2</td>
<td>50 - 90</td>
</tr>
<tr>
<td>S3</td>
<td>100 - 150</td>
</tr>
<tr>
<td>S4</td>
<td>160 - 210</td>
</tr>
</tbody>
</table>
Concrete Supply — this is usually geared to the demand or the rate at which the mixed concrete can be placed. Fresh concrete should always be used or placed within 30 minutes of mixing to prevent any undue drying out. Under no circumstances should more water be added after the initial mixing.

Small Batches — small, easily transported mixers with output capacities of up to 100 litres can be used for small and intermittent batches. These mixers are versatile and robust machines which can be used for mixing mortars and plasters as well as concrete.

Medium to Large Batches — mixers with output capacities from 100 litres to 10m³ with either diesel or electric motors. Many models are available with tilting or reversing drum discharge, integral weigh batching and loading hopper and a controlled water supply.

Ready Mixed Concrete — used mainly for large concrete batches of up to 6m³. This method of concrete supply has the advantages of eliminating the need for site space to accommodate storage of materials, mixing plant and the need to employ adequately trained site staff who can constantly produce reliable and consistent concrete mixes. Ready mixed concrete supply depots also have better facilities and arrangements for producing and supplying mixed concrete in winter or inclement weather conditions. In many situations it is possible to place the ready mixed concrete into the required position direct from the delivery lorry via the delivery chute or by feeding it into a concrete pump. The site must be capable of accepting the 20 tonnes laden weight of a typical ready mixed concrete lorry with a turning circle of about 15,000. The supplier will want full details of mix required and the proposed delivery schedule.

Ref. BS EN 206-1: Concrete. Specification, performance, production and conformity.
Cofferdams—these are temporary enclosures installed in soil or water to prevent the ingress of soil and/or water into the working area with the cofferdam. They are usually constructed from interlocking steel sheet piles which are suitably braced or tied back with ground anchors. Alternatively a cofferdam can be installed using any structural material which will fulfil the required function.

Typical Cofferdam Details—

- Steel kicking plate welded to waling
- UB end waling bolted to side UB walings through welded-on end plates
- Single skin of interlocking steel sheet piles
- Corner piece
- UB side waling
- Upper struts and walings
- Kicking plate
- UB main strut bolted to side waling
- UB secondary struts fixed to end walings main struts
- End fixing plate welded to strut
- Lower struts and walings
- Formation level
- ‘Cut off length’ to suit soil and sheet pile type

NB. Puncheons and wedges to be used as required.

For details of sheet pile sections and installation see next page.
Steel Sheet Piling — apart from cofferdam work, steel sheeting can be used in excavations and to form permanent retaining walls. Three common formats of steel sheet piles with interlocking joints are available with a range of section sizes and strengths up to a maximum length of 30 m.

Installing Steel Sheet Piles — to ensure that the sheet piles are pitched and installed vertically a driving trestle or guide frame is used. These are usually purpose built to accommodate a panel of 10 to 12 pairs of piles. The piles are lifted into position by a crane and driven by means of a percussion piling hammer or alternatively they can be pushed into the ground by hydraulic rams acting against the weight of the power pack which is positioned over the heads of the pitched piles.

![Diagram of steel sheet piles installation](image)

Note: Rot-proof PVC sheet piling is also available.
Alternative guide rail support system to that shown on the preceding page. This uses standard steel sections with components bolted together for simple assembly and dismantling. Tack welding is an option instead of bolting, with welds removed by angle grinder for dismantling on completion of pile driving.

Steel trench sheeting is available in various profiles, including the following:

- UC guide rail/waling
 (same other side)
- Intermediate steel sheet piles
 suspended and lowered by crane into adjacent interlocking joint, then driven/vibrated into the ground
- Channel cross head
- RSJ or channel brace
 (same other side)
- Channels
- Two steel sheet piles located in ground approximately 15 m apart, with bracing framework of steel channels and joists

Steel trench sheeting is available in various profiles, including the following:

- B = 330mm, D = 35mm, T = 3.5mm
- B = 400mm, D = 50mm, T = 6.0mm
Applications ~
• Cofferdams
• Ground water control/diversion
• Barrier for ground water treatment systems
• Retaining walls
• Containment walls
• Flood protection
• Coastal protection, bulkheads and sea walls
• Tunnelling, cut and cover
• River weir walls
• Slope stabilisation
• Baffle walls

Compound Profiles ~

Larssen Box

Frodingham Plated Box

Note: Tack welding is jointing adjacent pieces of steel discontinuously.

Ref. BS EN 12063: Execution of special geotechnical work. Sheet pile walls.
Caissons — these are box-like structures which are similar in concept to cofferdams but they usually form an integral part of the finished structure. They can be economically constructed and installed in water or soil where the depth exceeds 18:000. There are four basic types of caisson, namely:

1. Box Caissons
2. Open Caissons
3. Monolithic Caissons
4. Pneumatic Caissons — used in water — see next page.

Typical Caissons Details —

- precast concrete caisson sunk by flooding or adding weight
- diaphragm cross walls as required
- integral base slab
- void filled with in-situ concrete after installation

BOX CAISSON

- in-situ or precast concrete suspended cover slab
- water level
- void
- prepared bed

OPEN CAISSON

- void filled as required
- in-situ concrete plug or base
- precast concrete wall unit(s) — often circular in plan

LAND CAISSON

- excavation carried out inside caisson which sinks under own weight as walls are extended
- excavation level

MONOLITHIC CAISSON

- precast concrete caisson
- cast-in bentonite feed pipes
- excavation wells
- ground level
- bentonite slurry in 75mm wide annular space
- water level
Pneumatic Caissons ~ these are sometimes called compressed air caissons and are similar in concept to open caissons. They can be used in difficult subsoil conditions below water level and have a pressurised lower working chamber to provide a safe, dry working area. Pneumatic caissons can be made of concrete whereby they sink under their own weight or they can be constructed from steel with hollow walls which can be filled with water to act as ballast. These caissons are usually designed to form part of the finished structure.

Typical Pneumatic Caisson Details:
- air lock to operatives' access shaft
- upper platform and storage area
- air lock to materials supply shaft
- operatives' access ladder shaft
- materials supply shaft
- concrete caisson walls
- roof to working chamber
- pressurised working chamber (maximum safe working pressure 310 kN/m²)

When required depth is reached a concrete slab or plug is cast over the formation level and chamber sealed with mass concrete.
Culvert ~ construction for subways and underground passageways. Often used below elevated roads and railways as access for pedestrians, animals (badger crossings), sewers, tidal outfalls and as voids for the general location of pipes and cables.

Types ~ box, conduit or pipe, manufactured from reinforced concrete for placing in large excavations before backfilling; a technique known as cut and cover. Excavations may require temporary support from sheet steel piling. Ground dewatering may also be necessary.

Pre- cast concrete sections in standard lengths of 1.000, 1.500 or 2.000 m and up to 4.000 m width or diameter.
Principles of Procedure ~ after excavating to the appropriate depth, the base is levelled (slightly inclined for drainage) and finished with well compacted selected stone granules. Granular material is used to consolidate the soil and to ease movement of the precast concrete sections as they are pulled into place. After crane lowering several sections into approximate locations, the first is positioned, levelled and restrained for attachment of anchor tension units. The remaining sections are pulled into place as shown below. Spigot and socket joints are sealed with a synthetic rubber gasket or mastic sealant. Thereafter, further sections are added, similarly positioned and jointed. Subsequently, the complete installation is backfilled for ground reinstatement.

Assembly of precast concrete sections

- bolted down tensioner
- precast concrete section
- chain tensioned
- bolted down anchor
- first section restrained
- recesses cut at joint positions
- threads for handling loops and for securing tensioner and anchor

Joint detail at A

- joint surfaces primed
- spigot
- synthetic rubber sealing ring or mastic sealant in spigot recess

75 mm
5 to 10 mm
Underpinning ~ the main objective of most underpinning work is to transfer the load carried by a foundation from its existing bearing level to a new level at a lower depth. Underpinning techniques can also be used to replace an existing weak foundation. An underpinning operation may be necessary for one or more of the following reasons:

1. Uneven Settlement ~ this could be caused by uneven loading of the building, unequal resistance of the soil action of tree roots or cohesive soil settlement.

2. Increase in Loading ~ this could be due to the addition of an extra storey or an increase in imposed loadings such as that which may occur with a change of use.

3. Lowering of Adjacent Ground ~ usually required when constructing a basement adjacent to existing foundations.

General Precautions ~ before any form of underpinning work is commenced the following precautions should be taken:

1. Notify adjoining owners of proposed works giving full details and temporary shoring or tying.

2. Carry out a detailed survey of the site, the building to be underpinned and of any other adjoining or adjacent building or structures. A careful record of any defects found should be made and where possible agreed with the adjoining owner(s) before being lodged in a safe place.

3. Indicators or ‘tell-tales’ should be fixed over existing cracks so that any subsequent movements can be noted and monitored.

4. If settlement is the reason for the underpinning works a thorough investigation should be carried out to establish the cause and any necessary remedial work put in hand before any underpinning works are started.

5. Before any underpinning work is started the loads on the building to be underpinned should be reduced as much as possible by removing the imposed loads from the floors and installing any props and/or shoring which is required.

6. Any services which are in the vicinity of the proposed underpinning works should be identified, traced, carefully exposed, supported and protected as necessary.
Underpinning to Walls ~ to prevent fracture, damage or settlement of the wall(s) being underpinned the work should always be carried out in short lengths called legs or bays. The length of these bays will depend upon the following factors:

1. Total length of wall to be underpinned.
2. Wall loading.
3. General state of repair and stability of wall and foundation to be underpinned.
5. Estimated spanning ability of existing foundation.

Generally suitable bay lengths are:
1.000 to 1.500 for mass concrete strip foundations supporting walls of traditional construction.
1.500 to 3.000 for reinforced concrete strip foundations supporting walls of moderate loading.

In all cases the total sum of the unsupported lengths of wall should not exceed 25% of the total wall length.
The sequence of bays should be arranged so that working in adjoining bays is avoided until one leg of underpinning has been completed, pinned and cured sufficiently to support the wall above.

Typical Underpinning Schedule –

[Diagram showing a typical underpinning schedule with notes:]
- The diagram shows a two-bay working - once all the underpinning legs have been completed, the working bays will have combined to form a trench enabling a complete and final check to be made before backfilling.
- Bay width to give adequate working space - minimum 1.000.
- Wall and foundation to be underpinned.
- 1.500 long working bays.
Underpinning

Typical Traditional Underpinning Details:

- Datum board and plumb line
- Timbering as required
- Projection to existing foundation removed
- Consolidated backfill placed in trench after completion and inspection of all the underpinning work

UNDERPINNING BAY ~ TYPICAL SECTION

- Existing wall
- Underside of foundation cleaned to receive final pinning
- Tooted ends to underpinning wall
- 25 mm dia. x 400 mm long dowel bars

UNDERPINNING BAY ~ TYPICAL ELEVATION

- Existing foundation with projection removed
- 25 mm thick rich 'dry' well rammed cement mortar (1:2 or 3) - allow 12 hours for wall to settle before final pinning

- New mass concrete foundation
Jack Pile Underpinning — this method can be used when the depth of a suitable bearing capacity subsoil is too deep to make traditional underpinning uneconomic. Jack pile underpinning is quiet, vibration free and flexible since the pile depth can be adjusted to suit subsoil conditions encountered. The existing foundations must be in a good condition since they will have to span over the heads of the pile caps which are cast onto the jack pile heads after the hydraulic jacks have been removed.
Needle and Pile Underpinning — this method of underpinning can be used where the condition of the existing foundation is unsuitable for traditional or jack pile underpinning techniques. The brickwork above the existing foundation must be in a sound condition since this method relies on the 'arching effect' of the brick bonding to transmit the wall loads onto the needles and ultimately to the piles. The piles used with this method are usually small diameter bored piles — see page 268.

Typical Details

- Wall to be underpinned
 - Reinforced concrete needle or beam
 - Reinforced concrete cantilever needle or beam

- Final pinning
- Existing foundation
- Small diameter bored piles

Alternative Layouts

- Wall to be underpinned
 - Needle or beam
- Existing foundation

Traditional - simple

Zig Zag - uses less piles
'Pynford' Stool Method of Underpinning — this method can be used where the existing foundations are in a poor condition and it enables the wall to be underpinned in a continuous run without the need for needles or shoring. The reinforced concrete beam formed by this method may well be adequate to spread the load of the existing wall or it may be used in conjunction with other forms of underpinning such as traditional and jack pile.

Typical Details —

Stage 1 - holes formed in wall to receive steel or precast concrete stools

Stage 2 - stools inserted and pinned to soffit of brickwork over opening

Stage 3 - brickwork between pinned stools removed to leave wall supported on pinned stools

Stage 4 - reinforcement fabricated and placed around pinned stools

Stage 5 - formwork erected and beam cast

Stage 6 - formwork removed, beam allowed to cure before being pinned to underside of wall

reinforcement cage

formwork to beam side

finish beam - stools left in

precast concrete spreader pads

1.000
Root Pile or Angle Piling — this is a much simpler alternative to traditional underpinning techniques, applying modern concrete drilling equipment to achieve cost benefits through time saving. The process is also considerably less disruptive, as large volumes of excavation are avoided. Where sound bearing strata can be located within a few metres of the surface, wall stability is achieved through lined reinforced concrete piles installed in pairs, at opposing angles. The existing floor, wall and foundation are pre-drilled with air-flushed percussion auger, giving access for a steel lining to be driven through the low grade/clay subsoil until it impacts with firm strata. The lining is cut to terminate at the underside of the foundation and the void steel reinforced prior to concreting.

In many situations it is impractical to apply angle piling to both sides of a wall. Subject to subsoil conditions being adequate, it may be acceptable to apply remedial treatment from one side only. The piles will need to be relatively close spaced.
Underpinning Columns — columns can be underpinned in the same manner as walls using traditional or jack pile methods after the columns have been relieved of their loadings. The beam loads can usually be transferred from the columns by means of dead shores and the actual load of the column can be transferred by means of a pair of beams acting against a collar attached to the base of the column shaft.

Typical Details:

- Pair of precast concrete short beams bolted together to form collar
- 25mm deep chase
- Pair of precast concrete or steel beams bolted together
- Reinforced concrete column
- Bored or jack pile
- Concrete bearing pad as alternative to pile
- Foundation to be underpinned
- Kentledge of precast concrete blocks or similar to act as counterweight
- Steel column
- Pair of steel channels with web plates welded to steel column
- Pair of steel or precast concrete beams bolted together
- Pair of bored or jack piles
- Foundation to be underpinned
Classification of Water ~ water can be classified by its relative position to or within the ground thus –

Problems of Water in the Subsoil:
1. A high water table could cause flooding during wet periods.
2. Subsoil water can cause problems during excavation works by its natural tendency to flow into the voids created by the excavation activities.
3. It can cause an unacceptable humidity level around finished buildings and structures.

Control of Ground Water ~ this can take one of two forms which are usually referred to as temporary and permanent exclusion –
Permanent Exclusion ~ this can be defined as the insertion of an impermeable barrier to stop the flow of water within the ground.

Temporary Exclusion ~ this can be defined as the lowering of the water table and within the economic depth range of 1-500 can be achieved by subsoil drainage methods; for deeper treatment a pump or pumps are usually involved.

Simple Sump Pumping ~ suitable for trench work and/or where small volumes of water are involved.

Sizing Pumps ~
allow for friction loss due to fittings in terms of pipe length - added to actual pipe length
allowances for friction and head loss available from manufacturers' charts or tables
calculate or estimate water flow

allow for loss of head due to friction in pipe length - i.e. pipe length including an allowance for bends

total head = suction lift + delivery head + loss of head

sump
Jetted Sumps ~ this method achieves the same objectives as the simple sump methods of dewatering (previous page) but it will prevent the soil movement associated with this and other open sump methods. A borehole is formed in the subsoil by jetting a metal tube into the ground by means of pressurised water, to a depth within the maximum suction lift of the extract pump. The metal tube is withdrawn to leave a void for placing a disposable wellpoint and plastic suction pipe. The area surrounding the pipe is filled with coarse sand to function as a filtering media.

Typical Example ~
Wellpoint Systems – method of lowering the water table to a position below the formation level to give a dry working area. The basic principle is to jet into the subsoil a series of wellpoints which are connected to a common header pipe which is connected to a vacuum pump. Wellpoint systems are suitable for most subsoils and can encircle an excavation or be laid progressively alongside as in the case of a trench excavation. If the proposed formation level is below the suction lift capacity of the pump a multi-stage system can be employed – see next page.
Typical Wellpoint Progress Line Installation Details

header pipe

header pipe
to pump
to pump

wellpoints at 600 g/c

blank ends at head and tail of header pipe
trench excavation

new service pipe

header pipes can be extended as excavation progresses and removed from tail after backfilling

Typical Multi-stage Wellpoint Installation Details

ground encircling or ring header pipe connected to pump level

1.500 wide level earth platform for header pipe

original water table

water table lowered by pumping from upper stage wellpoints only

upper stage wellpoints

7.900

1.500

5.000

5.000

lower stage wellpoints

for details of wellpoints see previous page

installation arrangement symmetrical about centre line

temporary support work to sides of excavation

formation level

water table lowered by pumping from both wellpoint stages
Thin Grouted Membranes ~ these are permanent curtain or cut-off non-structural walls or barriers inserted in the ground to enclose the proposed excavation area. They are suitable for silts and sands and can be installed rapidly but they must be adequately supported by earth on both sides. The only limitation is the depth to which the formers can be driven and extracted.

Typical Details ~

- driven former section being extracted
- driven formers of beam, column, sheet pile, box or similar steel section
- ground level
- silt or sand subsoil
- cement grout forming a thin membrane in void left by former section
- thin grouted membrane or cut-off wall
- grout injection pipe

ELEVATION

PLAN

Driven former sections

354

Ground Water Control — Permanent Exclusion
Contiguous or Secant Piling ~ this forms a permanent structural wall of interlocking bored piles. Alternate piles are bored and cast by traditional methods and before the concrete has fully hardened the interlocking piles are bored using a toothed flight auger. This system is suitable for most types of subsoil and has the main advantages of being economical on small and confined sites; capable of being formed close to existing foundations and can be installed with the minimum of vibration and noise. Ensuring a complete interlock of all piles over the entire length may be difficult to achieve in practice; therefore the exposed face of the piles is usually covered with a mesh or similar fabric and face with rendering or sprayed concrete. Alternatively a reinforced concrete wall could be cast in front of the contiguous piling. This method of ground water control is suitable for structures such as basements, road underpasses and underground car parks.
Diaphragm Walls — these are structural concrete walls which can be cast in-situ (usually by the bentonite slurry method) or constructed using precast concrete components (see next page). They are suitable for most subsoils and their installation generates only a small amount of vibration and noise, making them suitable for works close to existing buildings. The high cost of these walls makes them uneconomic unless they can be incorporated into the finished structure. Diaphragm walls are suitable for basements, underground car parks and similar structures.

Typical Cast In-situ Concrete Diaphragm Wall Details:

- ready mixed concrete supply
- tremie pipe placing
- bentonite return, storage and draw off tanks
- displaced bentonite pumped to storage
- reinforcement
- stop end pipes as formers for interlocking joint between panels
- placed concrete

length of panel = 3 × hydraulic grab width

NB. Bentonite is a controlled mixture of fuller's earth and water which produces a mud or slurry which has thixotropic properties and exerts a pressure in excess of earth + hydrostatic pressure present on sides of excavation.
Precast Concrete Diaphragm Walls — these walls have the same applications as their in-situ counterparts and have the advantages of factory-produced components but lack the design flexibility of cast in-situ walls. The panel or post and panel units are installed in a trench filled with a special mixture of bentonite and cement with a retarder to control the setting time. This mixture ensures that the joints between the wall components are effectively sealed. To provide stability the panels or posts are tied to the retained earth with ground anchors.

![Diagram of Precast Concrete Diaphragm Wall Details]

- Lifting lugs
- Bentonite sealed tongue and groove joint
- Pocket for ground anchor anchorage
- Trench filled with special bentonite slurry as excavation proceeds
- Face of wall units coated with special compound to reduce the adhesion of bentonite
- Bentonite remains in place
- PCC panel diaphragm wall
- PCC post and panel diaphragm wall
- Ground anchors
- PCC trench guide walls to hold units in place whilst slurry sets
- Formation level
Grouting Methods ~ these techniques are used to form a curtain or cut off wall in high permeability soils where pumping methods could be uneconomic. The curtain walls formed by grouting methods are non-structural: therefore adequate earth support will be required and in some cases this will be a distance of at least 4-000 from the face of the proposed excavation. Grout mixtures are injected into the soil by pumping the grout at high pressure through special injection pipes inserted in the ground. The pattern and spacing of the injection pipes will depend on the grout type and soil conditions.

Grout Types ~

1. Cement Grouts ~ mixture of neat cement and water cement sand up to 1:4 or PFA (pulverised fuel ash) cement to a 1:1 ratio. Suitable for coarse-grained soils and fissured and jointed rock strata.

2. Chemical Grouts ~ one shot (premixed) or two shot (first chemical is injected followed immediately by second chemical resulting in an immediate reaction) methods can be employed to form a permanent gel in the soil to reduce its permeability and at the same time increase the soil's strength. Suitable for medium to coarse sands and gravels.

3. Resin Grouts ~ these are similar in application to chemical grouts but have a low viscosity and can therefore penetrate into silty fine sands.
Ground Freezing Techniques — this method is suitable for all types of saturated soils and rock and for soils with a moisture content in excess of 8% of the voids. The basic principle is to insert into the ground a series of freezing tubes to form an ice wall thus creating an impermeable barrier. The treatment takes time to develop and the initial costs are high; therefore it is only suitable for large contracts of reasonable duration. The freezing tubes can be installed vertically for conventional excavations and horizontally for tunnelling works. The usual circulating brines employed are magnesium chloride and calcium chloride with a temperature of \(-15^\circ\) to \(-25^\circ\)C which would take 10 to 17 days to form an ice wall 1.000 thick. Liquid nitrogen could be used as the freezing medium to reduce the initial freezing period if the extra cost can be justified.
Soil Investigation — before a decision is made as to the type of foundation which should be used on any particular site a soil investigation should be carried out to establish existing ground conditions and soil properties. The methods which can be employed together with other sources of information such as local knowledge, ordnance survey and geological maps, mining records and aerial photography should be familiar to students at this level. If such an investigation reveals a naturally poor subsoil or extensive filling the designer has several options:

1. Not to Build — unless a new and suitable site can be found building is only possible if the poor ground is localised and the proposed foundations can be designed around these areas with the remainder of the structure bridging over these positions.

2. Remove and Replace — the poor ground can be excavated, removed and replaced by compacted fills. Using this method there is a risk of differential settlement and generally for depths over 4,000 it is uneconomic.

3. Surcharging — this involves preloading the poor ground with a surcharge of aggregate or similar material to speed up settlement and thereby improve the soil’s bearing capacity. Generally this method is uneconomic due to the time delay before actual building operations can commence which can vary from a few weeks to two or more years.

4. Vibration — this is a method of strengthening ground by vibrating a granular soil into compacted stone columns either by using the natural coarse granular soil or by replacement — see pages 361 and 362.

5. Dynamic Compaction — this is a method of soil improvement which consists of dropping a heavy weight through a considerable vertical distance to compact the soil and thus improve its bearing capacity and is especially suitable for granular soils — see page 363.

6. Jet Grouting — this method of consolidating ground can be used in all types of subsoil and consists of lowering a monitor probe into a 150 mm diameter prebored guide hole. The probe has two jets the upper of which blasts water, concentrated by compressed air to force any loose material up the guide to ground level. The lower jet fills the void with a cement slurry which sets into a solid mass — see page 364.
Ground Vibration ~ the objective of this method is to strengthen the existing soil by rearranging and compacting coarse granular particles to form stone columns with the ground. This is carried out by means of a large poker vibrator which has an effective compacting radius of 1·500 to 2·700. On large sites the vibrator is inserted on a regular triangulated grid pattern with centres ranging from 1·500 to 3·000. In coarse-grained soils extra coarse aggregate is tipped into the insertion positions to make up levels as required whereas in clay and other fine particle soils the vibrator is surged up and down enabling the water jetting action to remove the surrounding soft material thus forming a borehole which is backfilled with a coarse granular material compacted in-situ by the vibrator. The backfill material is usually of 20 to 70 mm size of uniform grading within the chosen range. Ground vibration is not a piling system but a means of strengthening ground to increase the bearing capacity within a range of 200 to 500 kN/m².

Typical Details -
lifting pulley
manifold section
follower section(s)
top jets to assist in removal
vibration isolator
vibrator section containing hydraulic motor with rotating eccentric
compacted stone column

Typical Vibrator Data:
length - 5·000
weight - 2 tonnes
vibration - 30 to 60 hz.

standard track mounted crane

water and hydraulic hoses

side fins to prevent vibrator from twisting
nose cone housing lower jetting nozzle
Sand Compaction – applied to non-cohesive subsoils where the granular particles are rearranged into a denser condition by poker vibration.

The crane-suspended vibrating poker is water-jetted into the ground using a combination of self-weight and water displacement of the finer soil particles to penetrate the ground. Under this pressure, the soil granules compact to increase in density as the poker descends. At the appropriate depth, which may be determined by building load calculations or the practical limit of plant (generally 30 m max.), jetting ceases and fine aggregates or sand are infilled around the poker. The poker is then gradually withdrawn compacting the granular fill in the process. Compaction continues until sand fill reaches ground level. Spacing of compaction boreholes is relatively close to ensure continuity and an integral ground condition.

Sand compaction procedure
Dynamic Compaction ~ this method of ground improvement consists of dropping a heavy weight from a considerable height and is particularly effective in granular soils. Where water is present in the subsoil, trenches should be excavated to allow the water to escape and not collect in the craters formed by the dropped weight. The drop pattern, size of weight and height of drop are selected to suit each individual site but generally three or four drops are made in each position forming a crater up to 2.500 deep and 5.000 in diameter. Vibration through the subsoil can be a problem with dynamic compaction operations; therefore the proximity and condition of nearby buildings must be considered together with the depth position and condition of existing services on site.

Typical Details –

NB. Final ground level after compaction treatment and final levelling could be up to 1.500 lower than original ground level.

- weight range 10 to 20 tonnes
- depth up to 2.500 after 4 blows
- crater up to 5.000 in diameter
- free-fall distance range 15.000 to 25.000
- 20° to 40° spread

compacted soil

heavy duty track mounted crane
Jet Grouting ~ this is a means of consolidating ground by lowering a monitor probe into preformed boreholes. The probe is rotated and the sides of the borehole are subjected to a jet of pressurised water and air from a single outlet which enlarges and compacts the borehole sides. At the same time a cement grout is being introduced under pressure to fill the void being created. The water used by the probe and any combined earth is forced up to the surface in the form of a sludge. If the monitor probe is not rotated grouted panels can be formed. The spacing, depth and layout of the boreholes is subject to specialist design.
Green-field – land not previously built upon. Usually part of the ‘green-belt’ surrounding urban areas, designated inappropriate for development in order to preserve the countryside. Limited development for agricultural purposes only may be permitted on ‘green-belt’ land.

Brown-field – derelict land formerly a developed site and usually associated with previous construction of industrial buildings. The UK government has an objective to build 60% of new homes on these sites.

Site Survey – land previously used for industrial buildings could be contaminated with hazardous waste or pollutants. Therefore it is essential that a geo-technical survey is undertaken to determine whether contaminants are in the soil and ground water. Of particular concern are: acids, salts, heavy metals, cyanides and coal tars, in addition to organic materials which decompose to form the highly explosive gas methane. Analysis of the soil will determine a ‘trigger threshold value’, above which it will be declared sensitive to the end user. For example, a domestic garden or children’s play area will have a low value relative to land designated for a commercial car park.

Site Preparation – when building on sites previously infilled with uncontaminated material, a reinforced raft-type foundation may be adequate for light structures. Larger buildings will justify soil consolidation and compaction processes to improve the bearing capacity. Remedial measures for subsoils containing chemicals or other contaminants are varied.

Legislation – the Environment Protection Act of 1990 attempted to enforce responsibility on local authorities to compile a register of all potentially contaminated land. This proved unrealistic and too costly due to inherent complexities. Since then, requirements under the Environment Act 1995, the Pollution Prevention and Control Act 1999, the PPC Regulations 2000 and the subsequent DCLG Planning Policy Statement (PPS 23, 2004): Planning and Pollution Control (Annex 2: Development on land affected by contamination) have made this more of a planning issue. It has become the responsibility of developers to conduct site investigations and to present details of proposed remedial measures as part of their planning application.
The traditional low-technology method for dealing with contaminated sites has been to excavate the soil and remove it to places licensed for depositing. However, with the increase in building work on brown-field sites, suitable dumps are becoming scarce. Added to this is the reluctance of ground operators to handle large volumes of this type of waste. Also, where excavations exceed depths of about 5m, it becomes less practical and too expensive. Alternative physical, biological or chemical methods of soil treatment may be considered.

Encapsulation † in-situ enclosure of the contaminated soil. A perimeter trench is taken down to rock or other sound strata and filled with an impervious agent such as bentonite clay. An impermeable horizontal capping is also required to link with the trenches. A high-specification barrier is necessary where liquid or gas contaminants are present as these can migrate quite easily. A system of monitoring soil condition is essential as the barrier may decay in time. Suitable for all types of contaminant.

Soil washing † involves extraction of the soil, sifting to remove large objects and placing it in a scrubbing unit resembling a huge concrete mixer. Within this unit water and detergents are added for a basic wash process, before pressure spraying to dissolve pollutants and to separate clay from silt. Eliminates fuels, metals and chemicals.

Vapour extraction † used to remove fuels or industrial solvents and other organic deposits. At variable depths, small diameter boreholes are located at frequent intervals. Attached to these are vacuum pipes to draw air through the contaminated soil. The contaminants are collected at a vapour treatment processing plant on the surface, treated and evaporated into the atmosphere. This is a slow process and it may take several months to cleanse a site.

Electrolysis † use of low voltage d.c. in the presence of metals. Electricity flows between an anode and cathode, where metal ions in water accumulate in a sump before pumping to the surface for treatment.
BIOLOGICAL
Phytoremediation † the removal of contaminants by plants which will absorb harmful chemicals from the ground. The plants are subsequently harvested and destroyed. A variant uses fungal degradation of the contaminants.

Bioremediation † stimulating the growth of naturally occurring microbes. Microbes consume petrochemicals and oils, converting them to water and carbon dioxide. Conditions must be right, i.e. a temperature of at least 10°C with an adequate supply of nutrients and oxygen. Untreated soil can be excavated and placed over perforated piping, through which air is pumped to enhance the process prior to the soil being replaced.

CHEMICAL
Oxidation † subsoil boreholes are used for the pumped distribution of liquid hydrogen peroxide or potassium permanganate. Chemicals and fuel deposits convert to water and carbon dioxide.

Solvent extraction † the subsoil is excavated and mixed with a solvent to break down oils, grease and chemicals that do not dissolve in water.

THERMAL
Thermal treatment (off site) † an incineration process involving the use of a large heating container/oven. Soil is excavated, dried and crushed prior to heating to 2500°C, where harmful chemicals are removed by evaporation or fusion.

Thermal treatment (in-situ) † steam, hot water or hot air is pressure-injected through the soil. Variations include electric currents and radio waves to heat water in the ground to become steam. Evaporates chemicals.

This page intentionally left blank
5 SUPERSTRUCTURE – 1

CHOICE OF MATERIALS
BRICK AND BLOCK WALLS
CAVITY WALLS
DAMP-PROOF COURSES AND MEMBRANES
GAS-RESISTANT MEMBRANES
CALCULATED BRICKWORK MORTARS
ARCHES AND OPENINGS
WINDOWS, GLASS AND GLAZING
DOMESTIC AND INDUSTRIAL DOORS
CROSSWALL CONSTRUCTION
FRAMED CONSTRUCTION
RENDERING AND CLADDING EXTERNAL WALLS
TIMBER PITCHED AND FLAT ROOFS
GREEN ROOFS
THERMAL INSULATION
U-VALUE CALCULATION
THERMAL BRIDGING
ACCESS FOR THE DISABLED
STAGE 1

Consideration to be given to the following:

1. Building type and usage.
2. Building owner’s requirements and preferences.
3. Local planning restrictions.
4. Legal restrictions and requirements.
5. Site restrictions.
6. Capital resources.
7. Future policy in terms of maintenance and adaptation.

STAGE 2

Decide on positions, sizes and shapes of openings

STAGE 3

Decide on style, character and materials for openings

STAGE 4

Decide on basic materials for fabric of roof and walls

STAGE 5

Review all decisions and make changes if required
Formation ~ millions of years ago planet earth originated as a ball of hot gases. Millions of years later the gases began to cool, solidify and liquefy to form large areas of land and seas. Today, a molten mass remains at the core, some 200 km below the surface, occasionally materialising in volcanic eruptions. The effect of cooling also created an atmospheric condition about the earth. As the gases solidified they formed into deposits of stone, varying in composition depending on their relative levels below the earth’s crust and rate of cooling. Many of these stone deposits are materially suitable for building work and can be categorised under the following geological classifications:

- **Igneous** 2560 – 3200 kg/m³
- **Sedimentary** 1950 – 2750 ..
- **Metamorphic** 2630 – 3040 ..

Igneous ~ originated from volcanic activity, formed by the crystallisation of molten rock. Can be sub-divided into:

- **Plutonic** ~ solidified very slowly, deep into the lower part of the earth’s surface, e.g. granite.
- **Hypabyssal** ~ solidified less slowly, near to the earth’s upper surface, e.g. porphyry.
- **Volcanic** ~ solidified rapidly at the earth’s outer surface, e.g. pumice.

Sedimentary ~ composed of particles of older rocks broken down by erosion due to the receding water levels that at one time covered much of the earth’s surface. Fierce winds and ice also had a disintegrating effect on exposed stone deposits. Sedimentary deposits tend to lie in roughly horizontal stratified formations. These are sometimes loose as in sand and shingle, otherwise may be consolidated by superimposed loads with particles cemented together by minerals carried in water. In this dense form, sandstone and limestone can be shaped as building blocks. Chalk and shale are other examples.

Metamorphic ~ originally igneous or sedimentary, but changed structurally by geological processes involving heat, pressure and chemical reaction due to the presence of fluids. Examples include marble a form of metamorphic limestone, and slate a metamorphic clay.
Sources ~ stones of various types occur worldwide. Some are mined, but most are reasonably accessible from surface workings at quarries. Removal is by blasting and then wedge cutting into slabs, blocks and thin sections of workable sizes. Thereafter it is sawn and split into commercial sizes, dressed and/or polished for final purpose. The UK and Ireland have many sources of stone to include the following:

<table>
<thead>
<tr>
<th>Type</th>
<th>Location</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite</td>
<td>Cornwall</td>
<td>Light grey</td>
</tr>
<tr>
<td></td>
<td>Highlands and Western Isles</td>
<td>Bright grey to black</td>
</tr>
<tr>
<td></td>
<td>Leicestershire</td>
<td>Various, light to dark</td>
</tr>
<tr>
<td></td>
<td>Westmorland, Cumbria</td>
<td>Reddish brown</td>
</tr>
<tr>
<td></td>
<td>Down, Ireland</td>
<td>Greenish grey</td>
</tr>
<tr>
<td>Limestone</td>
<td>Portland, Dorset</td>
<td>White to light brown</td>
</tr>
<tr>
<td></td>
<td>Bath, West Country</td>
<td>White to cream</td>
</tr>
<tr>
<td></td>
<td>Lincolnshire</td>
<td>Cream to buff</td>
</tr>
<tr>
<td></td>
<td>Wiltshire</td>
<td>Light brown</td>
</tr>
<tr>
<td></td>
<td>Somerset</td>
<td>Yellowish grey</td>
</tr>
<tr>
<td></td>
<td>Kent</td>
<td>Blue grey</td>
</tr>
<tr>
<td></td>
<td>Leicestershire</td>
<td>Cream to yellow</td>
</tr>
<tr>
<td></td>
<td>Nottinghamshire</td>
<td>Yellowish brown</td>
</tr>
<tr>
<td></td>
<td>Oxfordshire</td>
<td>Buff</td>
</tr>
<tr>
<td>Sandstone</td>
<td>Yorkshire</td>
<td>Grey and light brown</td>
</tr>
<tr>
<td></td>
<td>Forest of Dean, Gloucs.</td>
<td>Grey/blue, grey/pink</td>
</tr>
<tr>
<td></td>
<td>Gloucestershire</td>
<td>Dull blue</td>
</tr>
<tr>
<td></td>
<td>Glamorganshire</td>
<td>Dull blue</td>
</tr>
<tr>
<td></td>
<td>Derbyshire</td>
<td>Buff and light grey</td>
</tr>
<tr>
<td></td>
<td>Sussex</td>
<td>Buff, brown specs</td>
</tr>
<tr>
<td>Marble</td>
<td>Dorset</td>
<td>Green/blue or grey</td>
</tr>
<tr>
<td></td>
<td>Derbyshire</td>
<td>Light grey</td>
</tr>
<tr>
<td></td>
<td>Argyllshire</td>
<td>Pale green/white</td>
</tr>
<tr>
<td></td>
<td>Galway, Ireland</td>
<td>Green</td>
</tr>
</tbody>
</table>

Stonework is often a preferred alternative to brickwork, particularly where local planning requirements stipulate that vernacular characteristics are maintained.
Naturally Quarried Stones ~ these vary marginally in appearance, even when extracted in the same location from one quarry. Texture and slight colour variation adds to the character and visual attractiveness, along with the presence of veins, crystals, fossils and other visible features that manifest with wear and exposure.

Artificial Stones ~ otherwise known as reconstituted, reconstructed or cast stone. These are factory manufactured by casting natural stone aggregates of 15 mm maximum size with white or coloured cement into moulds of a specific dimensions. The usual ratio is 3 to 4 parts of aggregate to 1 part cement. These defect free blocks produced under quality controlled conditions are an economical substitute for natural stone. Block sizes can vary to suit specific applications, but colour and texture are uniform. A variation is a 20 to 25 mm facing of natural stone aggregate, fine sand aggregate and cement (possibly colour pigmented) set over a base of wet concrete.

Further working of cast stone can produce a high quality surface finish to very accurate overall dimensions. In this precise form, blocks can be used as an artificial type of ashlar facing over brickwork or standard blockwork backgrounds. (see below for a definition of ashlar and next page for a summary of ashlar walling).

The long term weathering qualities of cast stone differ from that of natural stone. Natural stone weathers slowly with a gradual and fairly consistent colour change. Artificial stone has the characteristics of concrete. With time it may crack, become dull and attract dirt staining at joints, corners and projecting features such as copings and sills.

Ashlar ~ hewn and dressed stone facing block. Ashlaring ~ stonework comprising blocks of stone finely squared and dressed to a precise finish and dimensions, laid to courses of not less than 300 mm in height.

Ashlaracing ~ as defined on the preceding page, a wall facing of high
cuality stone laid with very thin joints. It is a classic façade
treatment to many existing prestigious buildings, but now rarely
used due to the cost of manufacturing the stone to fine
tolerances and the time consuming craftsmanship required for
construction. Examples are included here not just for historical
reference; many buildings constructed with ashlar walling are the
subject of ongoing refurbishment, conversion, modification,
adaptation and repair. Limestone is popular for ashlar, produced
in thicknesses between 100 and 300 mm and bedded in a mortar
known as mason’s putty. The traditional mix for this mortar
comprises stone dust, lime putty and portland cement in the ratio
of 7:5:2.

Examples of joint profiles to ashlar walling units (dimensions in mm)
Construction shown here is a reference to existing practice. In established towns and cities there are often many examples of ashlar stonework faced buildings. Not all are smooth faced as the stone sometimes features surface patterning.

A contemporary variation of the ashlar effect is achieved with cavity wall construction, where artificial or cast stone is deployed over the whole façade (similar to the detail on page 378). This effect can be used on a limited scale using the cast stone as an isolated feature, e.g. at quoins, sills and around openings for doors and windows. The ashlar effect can also be replicated in medium and high rise buildings by using cast stone (concrete) cladding. The principles of this are shown in Part 6.
Rubble Walls ~ walls constructed of stones used either in a random rough or uneven form as extracted from the quarry, or roughly dressed to a square or rectangular shape. Walls of this type are common in rural areas, particularly those close to quarry locations. Many walls are dry bonded as estate and farm boundaries. Otherwise, stones are laid with a relatively deep bed joint of mortar to accommodate irregularities, often as garden features and external walls to dwellings. Lime based mortar is preferred with long runs of stone walling as it is less prone to thermal movement cracking than cement mortar.

Random rubble uncoursed

Square random rubble

Squared random rubble with through snecks

brick lacing provides strength and feature

snecks min. 50 mm dimension

Random rubble with brick lacing
Common Treatment at Dressed Stone Arch Openings ~ examples show rubble walling to the left and ashlar to the right.

- Coursed random rubble wall
- Centre-line of semi-circular arch
- Ashlar wall
- Keystone
- Extrados
- Intrados
- Curved voussoirs
- Quoin stones

- Coursed random rubble wall
- Ashlar wall
- Keystone
- Stepped voussoirs
- Crossetted voussoirs
- Intrados
- Quoin stones
In many areas where locally quarried stone is the established building material, traditions are maintained and specified as part of planning compliance requirements. Dressed stone is an example of an established external feature and can be used as an alternative to brickwork as the outer leaf of cavity walls. Stone widths of 150 to 225 mm are usual, although as little as 100 mm is possible with mechanically cut and finished stone. However, this type of precise finishing produces an effect resembling ashlar rather than rubble. A lightweight concrete block inner leaf provides lateral support and stability with wall ties positioned at the maximum spacings shown on page 400.

Note: Solid walls of stone need to be at least 300 mm wide to ensure stability; in excess of 400 mm (depending on quality) to resist penetration of rainfall.
Shaping and Moulding ~ bricks were originally made by hand kneading clay into an open wooden box. The box dimensions typically 250 mm × 125 mm × 75 mm (10” × 5” × 3”) with a protrusion in the bottom if a frog or indent was required as a mortar key. Oversized dimensions allowed for shrinkage.

Drying and Burning ~ after surplus clay was struck off, the green brick was turned out of the mould and stacked with others in a drying shed for 3 to 6 weeks. The bricks were then burnt in open clamps. This involved stacking in open flue formations to a height of 3 to 4 metres with layers of fine coal laid between the bricks. Fine particles of coal could also be mixed with the clay during the moulding process. On setting the clamp, fires were placed and ignited leaving the bricks to burn for several days. Bricks were produced in this way by the Romans and more so during the Middle Ages. There is evidence that the Babylonians used this procedure over 6000 years ago.

Hardwood hand mould or frame for standard size clay bricks

Notes:
- Clamp burning is still used by some of the smaller brick companies, but most producers now use controlled kiln burning as described on the next page.
- Bricks made with fine coal deposits have characteristic purple/blue markings. They have become known as stocks.
- Small batch orders for purpose made bricks as shown on page 396, are still made by hand in specially shaped moulds.
Machine Manufacture — during the industrial revolution (mid 18th. to 19th. centuries) greater demand for bricks led to brick production on an industrial scale. Machinery was introduced to mass produce pressed bricks in moulds and for wire cutting extruded clay. Both techniques are the basis of production today. Wire cutting to size is used where clay is mechanically forced through a brick sized opening. Circular bars in the central area of the opening leave two or three perforations to provide for a mortar key when laid.

Kiln Drying and Firing — in 1858 the German, Friedrich Hoffmann devised the circular or oval kiln system containing several chambers. The chambers have loading doors, fire holes and flues connecting to a common chimney. Each chamber represents a different stage of drying, pre-heating, firing* (1100 °C) and cooling, all of which are undertaken on a large scale without transportation. A later development is the straight tunnel kiln with a central firing zone. With this, bricks stacked on trolleys run on a narrow railway line through slowly increasing and decreasing heat zones. Both types of kiln are used today, although the tunnel is generally preferred as this is easier to control.

* Fired using natural gas, fuel oil or solid fuel.
History ~ originated during the 19th. century as a form of cast artificial stone. Caustic lime and sand were mixed with water into a workable consistency and left until the lime was completely hydrated. It was then pressed into moulds for steam curing and initial hardening. After dry stacking for several weeks the bricks matured to a usable strength.

Development ~ by the end of the 19th. century, processing was considerably improved. Steam at 200°C was pressurised in an autoclave (a sealed vessel used to create a chemical reaction between the lime and sand under high pressure; approximately 15 bar or 1.5 MN/m²). The reaction formed hydrosilicates (hydrated calcium silicates) resulting in an extremely durable and strong building brick. This principle is the basis for calcium silicate brick production today.

Typical Composition ~ Silica (sand) 84%
Lime (quicklime or hydrated lime) 7%
Alumina and oxide of lime 2%
Water, manganese and alkalis 7%

Properties ~ Similar production costs to clay brick manufacture
High crushing strength (see below)
Dimensionally accurate, ie. edges straight, even and without defects, warping or twisting
Uniformity of dull white colour and of texture (perceived as uninteresting by some)

Variations ~ Flint-lime, produced by adding powdered flint
Colouring agents: options for buffs, blues, mauves, etc.

Typical Brick Compressive Strength Comparisons ~
Hand made clay ~ 6 to 14 MN/m²
Machine made clay ~ 15 to 20 MN/m²
Stock (clay) ~ 10 to 20 MN/m²
Engineering brick (clay) ~ 50 to 70 MN/m²
Sand-lime ~ 20 to 50 MN/m² (see BS EN 771-2)

Environmental Impact ~ due to less energy fuel use in production and without generating the air pollutants that occur with clay brick manufacture, considered to have a relative low environmental impact.
Bricks ~ these are walling units within a length of 337.5 mm, a width of 225 mm and a height of 112.5 mm. The usual size of bricks in common use is length 215 mm, width 102.5 mm and height 65 mm and like blocks they must be laid in a definite pattern or bond if they are to form a structural wall. Bricks are usually made from clay (BS EN 771-1) or from sand and lime (BS EN 771-2) and are available in a wide variety of strengths, types, textures, colours and special shaped bricks to BS 4729.

*see pages 401 to 403.
Typical Details ~
Bonding ~ an arrangement of bricks in a wall, column or pier laid to a set pattern to maintain an adequate lap.

Purposes of Brick Bonding:
1. Obtain maximum strength whilst distributing the loads to be carried throughout the wall, column or pier.
2. Ensure lateral stability and resistance to side thrusts.
3. Create an acceptable appearance.

Simple Bonding Rules:
1. Bond is set out along length of wall working from each end to ensure that no vertical joints are above one another in consecutive courses.

2. Walls which are not in exact bond length can be set out thus –

3. Transverse or cross joints continue unbroken across the width of wall unless stopped by a face stretcher.
English Bond — formed by laying alternate courses of stretchers and headers it is one of the strongest bonds but it will require more facing bricks than other bonds (89 facing bricks per m²).

Typical Example ~

[Diagram showing English Bond with annotations:]

1. **Stopped End**
2. **Return Wall**
3. **Attached Pier or Pilaster**
4. **Queen Closer**

Plan on Odd Numbered Courses

- Attached pier
- 3/4 bats
- Queen closer

Plan on Even Numbered Courses

- Attached pier
- Queen closer

Elevation
Flemish Bond ~ formed by laying headers and stretchers alternately in each course. Not as strong as English bond but is considered to be aesthetically superior and uses less facing bricks (79 facing bricks per m²).

Typical Example ~
Brick Bonding – Special Bonds

1 course of headers to 3 courses of stretchers

ENGLISH GARDEN WALL BOND - gives quick lateral spread of load - uses less facings than English bond.

FLEMISH GARDEN WALL BOND - enables a fair face to be kept on both sides of a one brick thick wall.

ENGLISH CROSS BOND - header placed next to end stretcher in every other stretcher course which thus staggers stretchers enabling patterns or diapers to be picked out in different texture or coloured bricks.

PLAN ON ODD COURSES

$\frac{2}{3}$ bats voids

PLAN ON EVEN COURSES

RAT TRAP BOND - uses brick on edge courses - hollow pockets or voids reduce total weight of wall and by the bricks on edge there is an overall saving of materials.
A variation of stretcher bond with less symmetry of load distribution. Each brick overlaps the brick below by a quarter.

RAKING STRETCHER BOND

Similar to English cross bond using bricks of colour or texture variation to create a pattern. Three quarter bricks are used at ends instead of queen closers.

DUTCH BOND

Two stretcher faces to one header each course. Headers stagger and may be picked out in colour or texture differing to the stretchers. Many variations of monk bond exist.

MONK BOND

Similar to Flemish bond. Two headers replace a stretcher every seventh course. Coloured or textured bricks pick out diamond shapes.

FLEMISH CROSS BOND
Stack Bonding – the quickest, easiest and most economical bond to lay, as there is no need to cut bricks or to provide special sizes. Visually the wall appears unbonded as continuity of vertical joints is structurally unsound, unless wire bed-joint reinforcement is placed in every horizontal course, or alternate courses where loading is moderate. In cavity walls, wall ties should be closer than normal at 600 mm max. spacing horizontally and 225 mm max. spacing vertically and staggered.

Application – this distinctive uniform pattern is popular as non-structural infill panelling to framed buildings and for non-load bearing exposed brickwork partitions.
Attached Piers ~ the main function of an attached pier is to give lateral support to the wall of which it forms part from the base to the top of the wall. It also has the subsidiary function of dividing a wall into distinct lengths whereby each length can be considered as a wall. Generally walls must be tied at end to an attached pier, buttressing or return wall.

Typical Examples ~

Requirements for the external wall of a small single storey non-residential building or annex exceeding 2.5 m in length or height and of floor area not exceeding 36 m²:

- Minimum thickness, 90 mm, i.e. 102.5 mm brick or 100 mm block.
- Built solid of bonded brick or block masonry and bedded in cement mortar.
- Surface mass of masonry, minimum 130 kg/m² where floor area exceeds 10 m².
- No lateral loading permitted excepting wind loads.
- Maximum length or width not greater than 9 m.
- Maximum height as shown on page 391.
- Lateral restraint provided by direct bearing of roof and as shown on page 543.
- Maximum of two major openings in one wall of the building. Height maximum 2.1 m, width maximum 5 m (if two openings, total width maximum 5 m).
- Other small openings permitted, as shown on next page.
- Bonded or connected to piers of minimum size 390 x 190 mm at maximum 3 m centres for the full wall height as shown above. Pier connections are with pairs of wall ties of 20 x 3 mm flat stainless steel type at 300 mm vertical spacing.
Attached piers as applied to half brick (90mm min.) thick walls ~

- Major openings A and B are permitted in one wall only. Aggregate width is 5m maximum. Height not greater than 2.1m. No other openings within 2m.
- Other walls not containing a major opening can have smaller openings of maximum aggregate area 2.4 m².
- Maximum of only one opening between piers.
- Distance from external corner of a wall to an opening at least 390mm unless the corner contains a pier.
- The minimum pier dimension of 390 × 190 mm can be varied to 327 × 215 mm to suit brick sizes.

Window opening max. 2.4 m²

36 m² max.
floor area

390 min.
190 min.

390 min.

325 min.

325 min.

column

standard garage
doors, 2.134 wide x 1.981 high plus frame

190

390 x 190
min. pier

daile
alternative return

390 min.

doors

maximum area 2.4 m²
Construction of half brick and 100 mm thick solid concrete block walls (90 mm min.) with attached piers, has height limitations to maintain stability. The height of these buildings will vary depending on the roof profile; it should not exceed the lesser value in the following examples ~

NB. All dimensions are maximum.

Height is measured from top of foundation to top of wall except where shown at an intermediate position. Where the underside of the floor slab provides an effective lateral restraint, measurements may be taken from here.
Movement ~ caused by building settlement, moisture absorption and drying out and thermal expansion and contraction.

Effects ~ provided the mortar is weaker than the bricks, the effects of movement within normal expectations will be accommodated without unsightly cracking and damage. See page 423 for guidance on mortar composition and strengths.

Limitations ~ moisture and thermal movement is reversible up to a limit. Clay brick walls can move about 1mm in every 1m of wall, so for a visually and practically acceptable movement joint width of 12 mm, the spacing should not exceed 12 m. For calcium silicate (sand-lime) bricks the maximum spacing is 9 m as they have greater movement characteristics.

Applications ~

Plan Views

See page 734 for lightweight concrete block walls.
The appearance of a building can be significantly influenced by the mortar finishing treatment to masonry. Finishing may be achieved by jointing or pointing.

Jointing – the finish applied to mortar joints as the work proceeds.

Pointing – the process of removing semi-set mortar to a depth of about 20mm and replacing it with fresh mortar. Pointing may contain a colouring pigment to further enhance the masonry.

Finish Profiles. Typical Examples Shown Pointed ~

Examples of pointing to masonry

NB. Recessed and overhung finishes should not be used in exposed situations, as rainwater can be detained. This could encourage damage by frost action and growth of lichens.
Brickwork should be reasonably uniform in colour, texture and finish. The natural composition of clay source material is variable, even where closely extracted. Combined with kiln baking to about 1100°C, no two bricks will be identical in dimensions and shape. Therefore, some allowance for characteristic irregularities of individual units is acceptable, see page 132. When assessing acceptable thickness and tolerance of brickwork joints, overall areas are considered and not the joints between individual units.

Note: Sand lime (calcium silicate) bricks are an exception. These are produced to relatively precise dimensional tolerances with a uniformity of colour and texture, see page 381.

Bed Joints, Deviation From the Horizontal ~

![Diagram of bed joints deviation](image)

Bed Joints, Thickness ~

![Diagram of bed joints thickness](image)
Specials – these are required for feature work and application to various bonds, as shown on the preceding pages. Bonding is not solely for aesthetic enhancement. In many applications, e.g. English bonded manhole walls, the disposition of bricks is to maximise wall strength and integrity. In a masonry wall the amount of overlap should not be less than one quarter of a brick length. Specials may be machine or hand cut from standard bricks, or they may be purchased as purpose-made. These purpose-made bricks are relatively expensive as they are individually manufactured in hardwood moulds.

Ref. BS 4729: Clay and calcium silicate bricks of special shapes and sizes. Recommendations.
Brickwork can be repetitive and monotonous, but with a little imagination and skilled application it can be a highly decorative art form. Artistic potential is made possible by the variety of naturally occurring brick colours, textures and finishes, the latter often applied as a sanding to soft clay prior to baking. Furthermore, the range of pointing techniques, mortar colourings, brick shapes and profiles can combine to create countless possibilities for architectural expression.

Bricks are manufactured from baked clay, autoclaved sand/lime or concrete. Clay is ideally suited to hand making special shapes in hardwood moulds. Some popular formats are shown below, but there is no limit to creative possibilities.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>plinth header</td>
<td>plinth stretcher</td>
<td>plinth wide-bed</td>
<td>plinth external return</td>
</tr>
<tr>
<td>215mm long</td>
<td>102-5mm wide</td>
<td>158mm long</td>
<td></td>
</tr>
<tr>
<td>squint angle</td>
<td>angle brick</td>
<td>dog-leg brick</td>
<td>birdsmouth</td>
</tr>
<tr>
<td>cant</td>
<td>double cant</td>
<td>single bullnose</td>
<td>double bullnose</td>
</tr>
<tr>
<td>bullnose on end (cow nose)</td>
<td>bullnose mitre</td>
<td>single bullnose header</td>
<td>double-headed bullnose</td>
</tr>
</tbody>
</table>

Purpose-made and special shape bricks
Plinths - used as a projecting feature to enhance external wall appearance at its base. The exposed projection determines that only frost-proof quality bricks are suitable and that recessed or raked-out joints which could retain water must be avoided.

Typical External Wall Base -

Corbel - a projecting feature at higher levels of a building. This may be created by using plinth bricks laid upside-down with header and stretcher formats maintaining bond. For structural integrity, the amount of projection (P) must not exceed one-third of the overall wall thickness (T). Some other types of corbel are shown on the next page.
Corbel — a type of inverted plinth, generally located at the higher levels of a building to create a feature. A typical example is quarter bonded headers as a detail below window openings.

Dentil Coursing — a variation on continuous corbelling where alternative headers project. This is sometimes referred to as table corbelling.

Dog Tooothing — a variation on a dentil course created by setting the feature bricks at 45°.

NB. Cavity insulated as required.
Blocks – these are walling units exceeding in length, width or height the dimensions specified for bricks in BS EN 772-16. Precast concrete blocks should comply with the recommendations set out in BS 6073-2 and BS EN 771-3. Blocks suitable for external solid walls are classified as load bearing and are required to have a minimum declared compressive strength of not less than 2.9 N/mm².

Typical Details ~

*See pages 401 to 403.

Refs.: BS 6073-2: Precast concrete masonry units.
BS EN 772-16: Methods of test for masonry units.
BS EN 771-3: Specification for (concrete) masonry units.
Cavity Walls - these consist of an outer brick or block leaf or skin separated from an inner brick or block leaf or skin by an air space called a cavity. These walls have better thermal insulation and weather-resistance properties than a comparable solid brick or block wall and therefore are in general use for the enclosing walls of domestic buildings. The two leaves of a cavity wall are tied together with wall ties located at 2.5/m², or at equivalent spacings shown below and as given in Section 2C of Approved Document A - Building Regulations.

With butterfly-type ties the width of the cavity should be between 50 and 75 mm. Where vertical twist-type ties are used the cavity width can be between 75 and 300 mm. Cavities are not normally ventilated and are closed by roof insulation at eaves level.

* Stainless steel or non-ferrous ties are now preferred.
Cavity Walls

Minimum requirements ~
Thickness of each leaf, 90 mm.
Width of cavity, 50 mm.
Wall ties at 2.5/m² (see previous page).
Compressive strength of bricks, 6 N/mm² up to two storeys.*
Compressive strength of blocks, 2.9 N/mm² up to two storeys.*
* For work between the foundation and the surface a 6 N/mm² minimum brick strength is normally specified or 2.9 N/mm² minimum concrete block strength (see next page for variations).
Combined thickness of each leaf + 10 mm whether used as an external wall, a separating wall or a compartment wall, should be not less than 1/16 of the storey height** which contains the wall.
** Generally measured between the undersides of lateral supports, e.g. undersides of floor or ceiling joists, or from the underside of upper floor joists to half-way up a laterally restrained gable wall. See Approved Document A, Section 2C for variations and next page.

Wall dimensions for minimum combined leaf thicknesses of 90 mm + 90 mm + 10 mm (190 mm min. actual thickness) ~

<table>
<thead>
<tr>
<th>Height</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 m max.</td>
<td>12.0 m max.</td>
</tr>
<tr>
<td>3.5 m – 9.0 m</td>
<td>9.0 m max.</td>
</tr>
</tbody>
</table>

Wall dimensions for minimum combined leaf thickness of 280 mm + 10 mm (290 mm actual thickness), e.g. 190 mm + 100 mm for one storey height and a minimum 180 mm combined leaf thickness + 10 mm (i.e. 90 mm + 100 mm) for the remainder of its height ~

<table>
<thead>
<tr>
<th>Height</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 – 9.0 m</td>
<td>9.0 – 12.0 m</td>
</tr>
<tr>
<td>9.0 m – 12.0 m</td>
<td>9.0 m max.</td>
</tr>
</tbody>
</table>

Wall dimensions for minimum combined leaf thickness of 280 mm + 10 mm (290 mm actual thickness) for two-storey height and a minimum 180 mm combined leaf thickness + 10 mm (190 mm actual thickness) for the remainder of its height ~

<table>
<thead>
<tr>
<th>Height</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.0 m – 12.0 m</td>
<td>9.0 m – 12.0 m</td>
</tr>
</tbody>
</table>

Wall length is measured from centre to centre of restraints by buttress walls, piers or chimneys.
For other wall applications, see the reference to calculated brickwork on page 419.
Cavity Walls

Single storey

Two storeys

Three storeys

Key for $H \leq 2.7$ m (N/mm2 min. compressive strength):

<table>
<thead>
<tr>
<th></th>
<th>Conc. blocks</th>
<th>Bricks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.9</td>
<td>6.0</td>
</tr>
<tr>
<td>B</td>
<td>7.3</td>
<td>9.0</td>
</tr>
<tr>
<td>C</td>
<td>7.3</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Note 1: If $H > 2.7$ m, A should be at least 7.3 N/mm2 for concrete blocks and 9 N/mm2 for brickwork, or as indicated in the diagrams (take greater value).

Note 2: The above applies to standard format bricks of 215 mm \times 102.5 mm \times 65 mm with $< 25\%$ formed voids (20% for bricks with frogs). For bricks with voids $> 25\%$ (max. 55%) see Table 6 in Approved Document A, Section 2C.
cavity leaves to be not less than 90 mm thick (see page 401)

outer leaf of selected facing bricks

ground level

cavity to extend at least 225 mm below the lowest dpc

dpc

cavity filling of weak concrete to prevent leaves of wall from moving towards each other as a result of earth pressures

TRADITIONAL CONSTRUCTION

bricks and blocks below ground level to be of suitable quality*

mass concrete strip foundation (1:3:6) 15 N/mm²

ALTERNATIVE CONSTRUCTION

225 or 300 mm wide blocks of 150 or 225 mm thickness laid flat

mass concrete strip foundation (1:3:6) 15 N/mm²

*Min. compressive strength depends on building height and loading. See Building Regulations A.D. A: Section 2C (Diagram 9) and extracts shown on the previous page.
Parapet ~ a low wall projecting above the level of a roof, bridge or balcony forming a guard or barrier at the edge. Parapets are exposed to the elements, justifying careful design and construction for durability.

Typical Details ~

Ref. BS EN 771-1: Specification for (clay) masonry units.

*‘severe’ exposure specification in the absence of a protective coping.
Historically, finned or buttressed walls have been used to provide lateral support to tall, single storey masonry structures such as churches and cathedrals. Modern applications are similar in principle and include theatres, gymnasiums, warehouses, etc. Where space permits, they are an economic alternative to masonry cladding of steel or reinforced concrete framed buildings. The fin or pier is preferably brick bonded to the main wall. It may also be connected with horizontally bedded wall ties, sufficient to resist vertical shear stresses between fin and wall.

Structurally, the fins are deep piers which reinforce solid or cavity masonry walls. For design purposes the wall may be considered as a series of ‘T’ sections composed of a flange and a pier. If the wall is of cavity construction, the inner leaf is not considered for bending moment calculations, although it does provide stiffening to the outer leaf or flange.
Masonry diaphragm walls are an alternative means of constructing tall, single storey buildings such as warehouses, sports centres, churches, assembly halls, etc. They can also be used as retaining and boundary walls with planting potential within the voids. These voids may also be steel reinforced and concrete filled to resist the lateral stresses in high retaining walls.

A diaphragm wall is effectively a cavity wall where the two leaves of masonry are bonded together with cross ribs and not wall ties. It is stronger than a conventionally tied cavity wall and for structural purposes may be considered as a series of bonded ‘I’ sections or box sections. The voids may be useful for housing services, but any access holes in the construction must not disturb the integrity of the wall. The voids may also be filled with insulation to reduce heat energy losses from the building, and to prevent air circulatory heat losses within the voids. Where thermal insulation standards apply, this type of wall will have limitations as the cross ribs will provide a route for cold bridging. U-values will increase by about 10% compared with conventional cavity wall construction of the same materials.

Ref. BS EN 1996: Design of masonry structures.
PD 6697: Recommendations for the design of masonry structures.
Individual masonry units may not be uniform in dimensions and shape. This characteristic is particularly applicable to natural stone masonry and to kiln manufactured clay bricks. Dimensional variations and other irregularities must be accommodated within an area of walling. The following is acceptable:

Vertical Alignment and Straightness ~

- **Reference line**
- 8mm max. per storey height up to 5m*
- 8mm max. deviation
- String line established from battens and deviation adjusted accordingly

*Walls > 5m height, max. 12mm out of plumb. Limited to 8mm/storey height. E.g. typical storey height of 2.5m = 3.2mm/m.

Horizontal Alignment ~

- 8mm max. deviation
- Reference line
- Plan view

Plan view
Function – the primary function of any damp-proof course (dpc) or damp-proof membrane (dpm) is to provide an impermeable barrier to the passage of moisture. The three basic ways in which damp-proof courses are used is to:

1. Resist moisture penetration from below (rising damp).
2. Resist moisture penetration from above.
3. Resist moisture penetration from horizontal entry.

Typical Examples ~

See also: BSs 743, 6398, 6515, 8102 and 8215.
Building Regulations, Approved Document C2, Section 5:
A wall may be built with a 'damp-proof course of bituminous material, polyethylene, engineering bricks or slates in cement mortar, or any other material that will prevent the passage of moisture.'

<table>
<thead>
<tr>
<th>Material</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead BS EN 12588 Code 4 (1.8 mm)</td>
<td>May corrode in the presence of mortar. Both surfaces to be coated with bituminous paint. Workable for application to cavity trays, etc.</td>
</tr>
<tr>
<td>Copper BS EN 1172 0.25 mm</td>
<td>Can cause staining to adjacent masonry. Resistant to corrosion.</td>
</tr>
<tr>
<td>Bitumen BS 6398 in various bases: Hessian 3.8 kg/m² Fibre 3.3 ... Asbestos 3.8 ... Hessian & lead 4.4 ... Fibre & lead 4.4 ...</td>
<td>Hessian or fibre may decay with age, but this will not affect efficiency. Tearable if not protected. Lead bases are suited where there may be a high degree of movement in the wall. Asbestos is now prohibited.</td>
</tr>
<tr>
<td>LDPE BS 6515 0.46 mm (polyethylene)</td>
<td>No deterioration likely, but may be difficult to bond, hence the profiled surface finish. Not suited under light loads. Absorbs movement well. Joints and angles made with product manufacturer’s adhesive tape.</td>
</tr>
<tr>
<td>Bitumen polymer and pitch polymer 1.10 mm</td>
<td></td>
</tr>
<tr>
<td>Polypropylene BS 5139 1.5 to 2.0 mm</td>
<td>Preformed dpc for cavity trays, cloaks, direction changes and over lintels.</td>
</tr>
</tbody>
</table>

NB. All the above dpcs to be lapped at least 100 mm at joints and adhesive sealed. Dpcs should be continuous with any dpm in the floor.
Note: It was not until the Public Health Act of 1875, that it became mandatory to install damp-proof courses in new buildings. Structures constructed before that time, and those since, which have suffered dpc failure due to deterioration or incorrect installation, will require remedial treatment. This could involve cutting out the mortar bed-joint two brick courses above ground level in stages of about 1m in length. A new dpc can then be inserted with mortar packing, before proceeding to the next length. No two adjacent sections should be worked consecutively. This process is very time consuming and may lead to some structural settlement. Therefore, the measures explained on the following two pages are usually preferred.
 aluminium stearate solutions.
 water-soluble silicone formulations (siliconates).

Methods - high pressure injection (0.70–0.90 MPa) solvent based.
 low pressure injection (0.15–0.30 MPa) water based.
 gravity feed, water based.
 insertion/injection, mortar based.

Pressure injection - 12mm diameter holes are bored to about two-thirds the depth of masonry, at approximately 150mm horizontal intervals at the appropriate depth above ground (normally two to three brick courses). These holes can incline slightly downwards. With high (low) pressure injection, walls in excess of 120mm (460 mm) thickness should be drilled from both sides. The chemical solution is injected by pressure pump until it exudes from the masonry. Cavity walls are treated as each leaf being a solid wall.

Gravity feed - 25mm diameter holes are bored as above. Dilute chemical is transfused from containers which feed tubes inserted in the holes. This process can take from a few hours to several days to effect. An alternative application is insertion of frozen pellets placed in the boreholes. On melting, the solution disperses into the masonry to be replaced with further pellets until the wall is saturated.

Diagram: Gravity infusion of silicon in solution
Injection mortars – 19 mm diameter holes are bored from both sides of a wall, at the appropriate level and no more than 230 mm apart horizontally, to a depth equating to three-fifths of the wall thickness. They should be inclined downwards at an angle of 20 to 30°. The drill holes are flushed out with water, before injecting mortar from the base of the hole and outwards. This can be undertaken with a hand operated caulking gun. Special cement mortars contain styrene butadiene resin (SDR) or epoxy resin and must be mixed in accordance with the manufacturer’s guidance.

Notes relating to all applications of chemical dpcs:

* Before commencing work, old plasterwork and rendered undercoats are removed to expose the masonry. This should be to a height of at least 300 mm above the last detectable (moisture meter reading) signs of rising dampness (1 metre min.).

* If the wall is only accessible from one side and both sides need treatment, a second deeper series of holes may be bored from one side, to penetrate the inaccessible side.

* On completion of work, all boreholes are made good with cement mortar. Where dilute chemicals are used for the dpc, the mortar is rammed the full length of the hole with a piece of timber dowelling.

* The chemicals are effective by bonding to, and lining the masonry pores by curing and solvent evaporation.

* The process is intended to provide an acceptable measure of control over rising dampness. A limited amount of water vapour may still rise, but this should be dispersed by evaporation in a heated building.

Refs.:

BS 6576: Code of practice for diagnosis of rising damp in walls of buildings and installation of chemical damp-proof courses.
BRE Digest 380: Damp-proof courses.
BRE Good Repair Guide 6: Treating rising damp in houses.
In addition to damp-proof courses failing due to deterioration or damage, they may be bridged as a result of:

* Faults occurring during construction.
* Work undertaken after construction, with disregard for the damp-proof course.

Typical Examples ~

Solid walls
- paving or earth stacked against wall
- original ground level

Cavity walls
- poor quality concrete and screed
- misalignment of dpc and dpm
- poor workmanship
Thermal insulation regulations may require insulating dpcs to prevent cold bridging around window and door openings in cavity wall construction (see pages 580 and 581). By locating a vertical dpc with a bonded insulant at the cavity closure, the dpc prevents penetration of dampness from the outside, and the insulation retains the structural temperature of the internal reveal. This will reduce heat losses by maintaining the temperature above dewpoint, preventing condensation, wall staining and mould growth.

Application ~

Refs.: Building Regulations, Approved Document L: Conservation of fuel and power.
BRE Report – Thermal Insulation: avoiding risks (3rd. ed.).
Building Regulations, Approved Document B3 (Vol. 1), Section 6: Concealed spaces (cavities).
Penetrating Gases ~ Methane and Radon

Methane - methane is produced by deposited organic material decaying in the ground. It often occurs with carbon dioxide and traces of other gases to form a cocktail known as landfill gas. It has become an acute problem in recent years, as planning restrictions on ‘green-field’ sites have forced development of derelict and reclaimed ‘brown-field’ land.

The gas would normally escape into the atmosphere, but under a building it pressurises until percolating through cracks, cavities and junctions with services. Being odourless, it is not easily detected until contacting a naked flame, then the result is devastating!

Radon - a naturally occurring colour/odourless gas produced by radioactive decay of radium. It originates in uranium deposits of granite subsoils as far apart as the south-west and north of England and the Grampian region of Scotland. Concentrations of radon are considerably increased if the building is constructed of granite masonry. The combination of radon gas and the tiny radioactive particles known as radon daughters are inhaled. In some people with several years’ exposure, research indicates a high correlation with cancer related illness and death.

Protection of buildings and the occupants from subterranean gases can be achieved by passive or active measures incorporated within the structure:

1. Passive protection consists of a complete airtight seal integrated within the ground floor and walls. A standard LDPE damp-proof membrane of 0.3mm thickness should be adequate if carefully sealed at joints, but thicknesses of up to 1mm are preferred, combined with foil and/or wire reinforcement.

2. Active protection requires installation of a permanently running extract fan connected to a gas sump below the ground floor. It is an integral part of the building services system and will incur operating and maintenance costs throughout the building’s life.

NB. See next page for construction details.
Gas-resistant Construction

Suspended concrete floor
- cavity wall insulated as required
- stepped cavity tray/dpc
- weep hole
- air brick
- dpc
- sealed joint
- insulation
- LDPE membrane min. 1200 gauge (0.3 mm)
- precast reinforced concrete floor

Solid floor (2 possibilities)
- LDPE membrane
- finished slab level
- EPS profiled matting heights – 80, 100, 150 & 200 mm
- min. 200 mm granular layer
- subfloor vent pipe
- reinforced concrete slab
- damp- and gas-proof membrane
- vent outlet above eaves
- vent riser if trench paved over granular trench

ACTIVE
- reinforced concrete slab
- LDPE membrane
- paving slab
- 110 mm uPVC extract duct
- void
- granular fill
- perforated bricks
- sump centrally located

PASSIVE
- Suspended concrete floor
Calculated Brickwork ~ for small and residential buildings up to three storeys high, the sizing of load-bearing brick walls can be taken from data given in Section 2C of Approved Document A. The alternative methods for these and other load-bearing brick walls are given in:

BS EN 1996: Design of masonry structures.

The main factors governing the load bearing capacity of brick walls and columns are:

1. Thickness of Wall.
2. Strength of bricks used.
3. Type of mortar used.
4. Slenderness ratio of wall or column.
5. Eccentricity of applied load.

Thickness of Wall ~ this must always be sufficient throughout its entire body to carry the design loads and induced stresses. Other design requirements such as thermal and sound insulation properties must also be taken into account when determining the actual wall thickness to be used.

Effective Thickness ~ this is the assumed thickness of the wall or column used for the purpose of calculating its slenderness ratio ~ see page 419.

Typical Examples ~
Strength of Bricks ~ due to the wide variation of the raw materials and methods of manufacture bricks can vary greatly in their compressive strength. The compressive strength of a particular type of brick or batch of bricks is taken as the arithmetic mean of a sample of ten bricks tested in accordance with the appropriate British Standard. A typical range for clay bricks would be from 20 to 170 MN/m² the majority of which would be in the 20 to 90 MN/m² band. Calcium silicate bricks have a compressive strength between 20 and 50 MN/m².

Strength of Mortars ~ mortars consist of an aggregate (sand) and a binder which is usually cement; cement plus additives to improve workability; or cement and lime. The factors controlling the strength of any particular mix are the ratio of binder to aggregate plus the water:cement ratio. The strength of any particular mix can be ascertained by taking the arithmetic mean of a series of test cubes or prisms — see page 423.

Wall Design Strength ~ the basic stress of any brickwork depends on the crushing strength of the bricks and the type of mortar used to form the wall unit. This relationship can be plotted on a graph as shown below:

NB. 1 MN/m² equates to 1 N/mm².
Slenderness Ratio ~ this is the relationship of the effective height to the effective thickness thus:

\[
\text{Slenderness ratio} = \frac{\text{effective height}}{\text{effective thickness}} = \frac{h}{t} > 27
\]

Effective Height ~ this is the dimension taken to calculate the slenderness ratio as opposed to the actual height.

Typical Examples - actual height = \(H \) effective height = \(h \)

![Diagram showing different types of walls with effective height and thickness](image)

Effective Thickness ~ this is the dimension taken to calculate the slenderness ratio as opposed to the actual thickness.

Typical Examples - actual thickness = \(T \) effective thickness = \(t \)

![Diagram showing different types of walls with effective thickness and stress reduction](image)

Stress Reduction ~ the permissible stress for a wall is based on the basic stress multiplied by a reduction factor related to the slenderness factor and the eccentricity of the load:

![Graph showing stress reduction factors](image)
Effective Thickness = tK

Cavity wall

Effective Thickness = 0.66 (t1 + t2K) or t1 or t2K (take greater)

Key:
- t = actual wall thickness
- t1 = actual thickness of cavity leaf without attached pier
- t2 = actual thickness of leaf with attached pier
- tp = pier thickness
- K = stiffening coefficient
- Sp = pier spacing
- Wp = pier width

Stiffening Coefficient K ~

<table>
<thead>
<tr>
<th>Sp + Wp</th>
<th>tp + t = 1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤6</td>
<td>K = 1.0</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>≥20</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Linear interpolation may be applied

E.g.

Sp + Wp = 2150 + 215 = 10
tp + t = 328 + 215 = 1.523
By interpolation, K = 1.104
Effective thickness, tK = 215 x 1.104 = 237.4 mm
Piers and Columns. Effective Height Calculations ~

E.g. A one-and-a-half brick column of 4.000m effective height/length. See page 645 for factors affecting the effective length of a column.

It is usual to incorporate a factor of safety into these calculations. Using a figure of 2, the brickwork safe bearing strength will be:

\[4 \text{ N/mm}^2 \times 2 = 8 \text{ N/mm}^2 \]

Permissible load will be:

\[2 \text{ N/mm}^2 \times 107,584 = 215,168 \text{ Newtons} \]

\[\text{Newton} \times \text{gravity} (9.81 \text{ m/s}^2) = \text{kilograms} \]

\[215,168 \div 9.81 = 21,933 \text{ kg} \text{ (22 tonnes approx.)} \]

Note: This example is a very simple application that has assumed that there is no axial loading with bending or eccentric forces such as lateral loading from the structure or from wind loading. It also has a low slenderness ratio (effective height/length to least lateral dimension), i.e. 4000 mm ÷ 328 mm = 12.2. See pages 602 and 603 for the effect of buckling factors where greater slenderness ratios apply.
Lime ~ traditional mortars are a combination of lime, sand and water. These mixes are very workable and have sufficient flexibility to accommodate a limited amount of wall movement due to settlement, expansion and contraction. The long term durability of lime mortars is poor as they can break down in the presence of atmospheric contaminants and surface growths. Nevertheless, lime is frequently specified as a supplementary binder with cement, to increase mix workability and to reduce the possibility of joint shrinkage and cracking, a characteristic of stronger cement mortars.

Cement ~ the history of cement-type mortar products is extensive. Examples dating back to the Mesopotamians and the Egyptians are not unusual; one of the earliest examples from over 10,000 years ago has been found in Galilee, Israel. Modern mortars are made with Portland cement, the name attributed to a bricklayer named Joseph Aspdin. In 1824 he patented his improved hydraulic lime product as Portland cement, as it resembled Portland stone in appearance. It was not until the 1920s that Portland cement, as we now know it, was first produced commercially by mixing a slurry of clay (silica, alumina and iron-oxides) with limestone (calcium carbonate). The mix is burnt in a furnace (calcinated) and the resulting clinker crushed and bagged.

Mortar ~ mixes for masonry should have the following properties:

* Adequate strength
* Workability
* Water retention during laying
* Plasticity during application
* Adhesion or bond
* Durability
* Good appearance ~ texture and colour

Modern mortars are a combination of cement, lime and sand plus water. Liquid plasticisers exist as a substitute for lime, to improve workability and to provide some resistance to frost when used during winter.

Masonry cement ~ these proprietary cements generally contain about 75% Portland cement and about 25% of fine limestone filler with an air entraining plasticiser. Allowance must be made when specifying the mortar constituents to allow for the reduced cement content. These cements are not suitable for concrete.

Refs.: BS 6463-101, 102 and 103: Quicklime, hydrated lime and natural calcium carbonate.
BS EN 197-1: Cement. Composition, specifications and conformity criteria for common cements.
Ready mixed mortar ~ this is delivered dry for storage in purpose-made silos with integral mixers as an alternative to site blending and mixing. This ensures:

* Guaranteed factory quality controlled product
* Convenience
* Mix consistency between batches
* Convenient facility for satisfying variable demand
* Limited wastage
* Optimum use of site space

Mortar and cement strength ~ see also page 418. Test samples are made in prisms of $40 \times 40 \text{mm}$ cross section, 160mm long. At 28 days samples are broken in half to test for flexural strength. The broken pieces are subject to a compression test across the 40 mm width. An approximate comparison between mortar strength (MN/m² or N/mm²), mortar designations (i to v) and proportional mix ratios is shown in the classification table below. Included is guidance on application.

Proportional mixing of mortar constituents by volume is otherwise known as a prescribed mix or simply a recipe.

Mortar classification ~

<table>
<thead>
<tr>
<th>Traditional designation</th>
<th>BS EN 998-2 Strength</th>
<th>Proportions by volume cement/lime/sand</th>
<th>Proportions by volume cement/sand</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>12</td>
<td>1:0.25:3</td>
<td>1:3</td>
<td>Exposed external</td>
</tr>
<tr>
<td>ii</td>
<td>6</td>
<td>1:0.5:4–4.5</td>
<td>1:3–4</td>
<td>General external</td>
</tr>
<tr>
<td>iii</td>
<td>4</td>
<td>1:1.5–6</td>
<td>1:5–6</td>
<td>Sheltered internal</td>
</tr>
<tr>
<td>iv</td>
<td>2</td>
<td>1:2:8–9</td>
<td>1:7–8</td>
<td>General internal</td>
</tr>
<tr>
<td>v</td>
<td>–</td>
<td>1:3:10–12</td>
<td>1:9–10</td>
<td>Internal. grouting</td>
</tr>
</tbody>
</table>

Relevant standards:

BS EN 1996: Design of masonry structures.
BS EN 196: Methods of testing cement.
PD 6678: Guide to the specification of masonry mortar.
BS EN 1015: Methods of test for mortar for masonry.
Supports Over Openings

Supports Over Openings - the primary function of any support over an opening is to carry the loads above the opening and transmit them safely to the abutments, jambs or piers on both sides. A support over an opening is usually required since the opening infilling such as a door or window frame will not have sufficient strength to carry the load through its own members.

Type of Support -

for monolithic walling of materials such as concrete load is taken as a rectangle of wall above the supporting lintel. jamb or pier end bearing 100 mm min., 150 mm min. where clear span > 1.2 m due to bonding of brickwork, theoretical area supported is an equilateral triangle but for loading calculations the vertical dimension should be taken beam or lintel designed to carry loads without undue deflection end bearing clear span BEAM OR LINTEL

loads are transmitted around profile of arch to the abutments on both sides voussoirs springer abutment key brick or stone intrados or soffit springing clear span bearing extrados arch

semicircular arch but any geometrically formed curved outline can be used

424
Arch Construction — by the arrangement of the bricks or stones in an arch over an opening it will be self-supporting once the jointing material has set and gained adequate strength. The arch must therefore be constructed over a temporary support until the arch becomes self-supporting. The traditional method is to use a framed timber support called a centre. Permanent arch centres are also available for small spans and simple formats.

Typical Arch Formats —

Camber Arch
- Allow 3 mm for every 300 mm of span to form camber.

Segmental Arch
- Rise 1/8 of span.

Drop Arch
- 25 x 25 laggings.
- 150 x 32 tie.

3 Centre Arch
- 225 x 25 ribs.
- 200 x 25 rib.
- 200 x 25 tie.
- Adjustable steel props.

Timber framed centre for spans up to 1.500.
The profile of an arch does not lend itself to simple positioning of a damp-proof course. At best, it can be located horizontally at upper extrados level. This leaves the depth of the arch and masonry below the dpc vulnerable to dampness. Proprietary galvanised or stainless steel cavity trays resolve this problem by providing:

* Continuity of dpc around the extrados.
* Arch support/centring during construction.
* Arch and wall support after construction.

Standard profiles are made to the traditional outlines shown on the previous two pages, in spans up to 2 m. Other options may also be available from some manufacturers. Irregular shapes and spans can be made to order.

Note: Arches in semicircular, segmental or parabolic form up to 2 m span can be proportioned empirically. For integrity of structure it is important to ensure sufficient provision of masonry over and around any arch.
The example in steel shown on the preceding page combines structural support with a damp-proof course, without the need for temporary support from a centre. Where traditional centring is retained, a lightweight preformed polypropylene cavity tray/dpc can be used. These factory-made plastic trays are produced in various thicknesses of 1.5 to 3 mm relative to spans up to about 2 m. Arch centres are made to match the tray profile and with care can be reused several times.

An alternative material is code 4 lead sheet.* Lead is an adaptable material but relatively heavy. Therefore, its suitability is limited to small spans particularly with non-standard profiles.

*BS EN 12588: Lead and lead alloys. Rolled lead sheet for building purposes. Lead sheet is coded numerically from 3 to 8 (1.25 to 3.50 mm - see page 531), which closely relates to the traditional specification in lbs./sq. ft.

Ref. BS EN 1996: Design of masonry structures.
Openings — these consist of a head, jambs and sill. Different methods can be used in their formation, all with the primary objective of adequate support around the void. Details relate to older/existing construction and where thermal insulation is not critical. Application limited — see pages 580 and 581.

Typical Head Details —

Jambs ~ these may be bonded as in solid walls or unbonded as in cavity walls. The latter must have some means of preventing the ingress of moisture from the outer leaf to the inner leaf and hence the interior of the building. Details as preceding page.

Application limited – see pages 580 and 581.

Typical Jamb Details ~

Opening Details – Sills

Sills – the primary function of any sill is to collect the rainwater which has run down the face of the window or door and shed it clear of the wall below.

Timber Sill 1, Cast Stone Subsill and Slate Sill have limited applications – see pages 580 and 581.

Typical Sill details –

Ref. BS 5642-1: Sills and copings. Specification for window sills of precast concrete, cast stone, clayware, slate and natural stone.
Traditional Construction — checked rebates or recesses in masonry solid walls were often provided at openings to accommodate door and window frames. This detail was used as a means to complement frame retention and prevent weather intrusion.

Exposure Zones — checked reveal treatment is now required mainly where wind-driven rain will have most impact. This is primarily in the south-west and west coast areas of the British Isles, plus some isolated inland parts that will be identified by their respective local authorities.

Typical Checked Opening Details —

A window must be aesthetically acceptable in the context of building design and the surrounding environment.

- glass and glazing to be suitable for window position and type
- suitable and durable materials required for framing
- thermal and sound insulation properties to be acceptable to client and within Building Regs.
- sizing of openings to meet requirements of Building Regulations for limiting heat losses and fire escape
- windows should be weather tight when opening lights are closed
- perimeter joint to be adequately sealed

Windows should be selected or designed to resist wind loadings, be easy to clean and provide for safety and security. They should be sited to provide visual contact with the outside.

Habitable upper floor rooms should have a window for emergency escape. Min. opening area, 0.330m². Min. height and width, 0.450m. Max height of opening, 1.100m above floor.
Windows — Conventional Types

FIXED LIGHT
- Usually used in conjunction with other types

SIDE HUNG CASEMENT
- Simplest and cheapest type of opening window

TOP HUNG CASEMENT
- Usually of small size for controlled ventilation

BOTTOM HUNG CASEMENT
- Use as for top hung casement
 - Sashes hung on spring balances or weights

VERTICAL PIVOT
- High performance windows — dearer than casement types — can be obtained as reversible for easy cleaning
 - Sashes run on guide rails

HORIZONTAL PIVOT
- Louvres hung on centre pivots

DOUBLE HUNG SLIDING SASH
- Gives good controlled ventilation without any forward or backward projection of sash

HORIZONTAL SLIDING SASH
- Good ventilation with only small projections of louvres

LOUVRE
Timber Casement Windows

TYPICAL ELEVATIONS

TYPICAL VERTICAL SECTION OF MODIFIED BS WINDOW
The standard range of casement windows used in the UK was derived from the English Joinery Manufacturer's Association (EJMA) designs of some 50 years ago. These became adopted in BS 644: Timber windows and doorsets. Fully finished factory assembled windows of various types. Specification. A modified type is shown on the preceding page. Contemporary building standards require higher levels of performance in terms of thermal and sound insulation (Bldg. Regs. Pt. L and E), air permeability, watertightness and wind resistance (BS ENs 1026, 1027 and 12211, respectively). This has been achieved by adapting Scandinavian designs with double and triple glazing to attain U-values as low as 1.2 W/m²K and a sound reduction of 50 dB.

Further refs.:
BS 6375 series: Performance of windows and doors.
BS 6375-1: Classification for weather tightness.
BS 6375-2: Classification for operation and strength characteristics.
PAS 24: Enhanced security performance requirements for doorsets and windows in the UK.
Details show EJMA (see previous page) standardised designs for casements with double glazed factory produced hermetically sealed units. In the early 1960s EJMA evolved into the British Woodworking Manufacturers Association (BWMA) and subsequently the British Woodworking Federation (bWF). Although dated, the principles of these designs remain current.
Metal Windows – these can be obtained in steel (BS 6510) or in aluminium alloy (BS 4873). Steel windows are cheaper in initial cost than aluminium alloy but have higher maintenance costs over their anticipated life, both can be obtained fitted into timber subframes. Generally they give a larger glass area for any given opening size than similar timber windows but they can give rise to condensation on the metal components. Page 454 shows an example of an energy efficient improvement.

Refs.:
BS 4873: Aluminium alloy windows and doorsets. Specification.
BS 6510: Steel-framed windows and glazed doors. Specification.
Timber Windows ~ wide range of ironmongery available which can be factory fitted or supplied and fixed on site.

Metal Windows ~ ironmongery usually supplied with and factory fitted to the windows.

Typical Examples ~

Casement Stay
- Malleable iron, leaf pattern, half-round section with two pins
- Sizes: 200, 250 and 300 mm

Casement Fastener
- Hot pressed aluminium, plain end pattern
- Wedge plate

Casement Stay
- Cast aluminium, plain end pattern with one pin
- Sizes: 250 and 300 mm

Casement Fastener
- Hot pressed brass

Casement Stay
- Steel and brass, sliding screw-down pattern
- Sizes: 250 and 300 mm

Ventlight Catch
- Used with bottom hung ventlights
- Malleable iron or brass
- Sizes: 150, 175 and 200 mm

Quadrant Stay
- Steel, stayput pattern
- Arm Sizes: 100, 140 and 175 mm
Sliding Sash Windows – these are an alternative format to the conventional side hung casement windows and can be constructed as a vertical or double hung sash window or as a horizontal sliding window in timber, metal, plastic or in any combination of these materials. The performance and design functions of providing daylight, ventilation, vision out, etc. are the same as those given for traditional windows in Windows – Performance Requirements on page 432.

Typical Double Hung Weight Balanced Window Details ~
Sliding Sash Windows – Weight Balanced Details

HEAD
- plywood parting slip suspended from pulley head
- 92 X 21 head outside lining
- pulley wheel
- 70 x 14 jamb inside lining
- 70 x 14 head inside lining
- angle glue block
- 19 x 14 staff bead
- 21mm pulley head
- 21 x 8 parting bead
- 48 x 41 sash frame

INTERMEDIATE
- parting slip
- sash cord
- sash cord
- 21mm pulley stile
- 19 x 14 staff bead
- 49 x 32 splayed and rebated meeting rails
- 92 X 21 outside lining
- horn

SILL
- upper sash counter weight
- plywood backing
- 48 x 41 sash frame
- 57 x 41 bottom rail
- 33 x 19 draught stop
- 135 x 60 flush sill
- 21 x 8 parting bead
- 70 x 14 jamb inside lining
- 70 x 14 head inside lining
- angle glue block
- 19 x 14 staff bead
- 21mm pulley head
- 21 x 8 parting bead
- 48 x 41 sash frame
Double Hung Sash Windows — these vertical sliding sash windows come in two formats when constructed in timber. The weight balanced format is shown on the preceding two pages. The alternative spring balanced type is illustrated below and overleaf. Various formats for sliding windows are specified in BS 644: Timber windows and doorsets.

Typical Double Hung Spring Balanced Window Details —

ELEVATION

- 114 x 33 solid stile
- Staff bead
- Spring balance
- Horn
- 49 x 38 splayed and rebated meeting rails
- 41 x 22 glazing bar
- 33 x 19 draught stop
- 135 x 60 flush sill

JAMB DETAIL

- 48 x 21 jamb outside lining
- 48 x 41 sash framing
- Upper sash
- Glass
- Lower sash

VERTICAL SECTION

- 48 x 21 head outside lining
- 48 x 41 sash framing
- 21 x 8 parting bead
- 114 x 33 solid head
- 19 x 14 removable staff bead
- Spiral spring balance
- 41 x 22 glazing bar

NB. If 114 x 60 solid stiles are used spring balances can be housed within grooves in the solid stile thickness.
NB. The spring balance can be housed within the stile. Stile thickness will need to be at least 60 mm to accommodate the grooved recess.
Horizontally Sliding Sash Windows ~ these are an alternative format to the vertically sliding or double hung sash windows shown on pages 439 to 442 and can be constructed in timber, metal, plastic or combinations of these materials with single or double glazing. A wide range of arrangements are available with two or more sliding sashes which can have a ventlight incorporated into the outer sliding sash.

Typical Horizontally Sliding Sash Window Details ~

- **timber subframe**
- **window frame** bedded in sealant
- **nylon slipper shoes and polypropylene pile seals**
- **head of timber subframe**
- **anodised aluminium framing**
- **integral pull handle**
- **inner sash**
- **bushed nylon rollers**
- **sill of timber subframe**

ELEVATION
- factory-glazed anodised aluminium horizontal sliding sash
- outer sash
- integral pull handle
- window frame sealant bedded
- inner sliding sash
- weather-sealed meeting stiles

VERTICAL SECTION
- outer sliding sash
- weather seal

HORIZONTAL SECTION
Pivot Windows ~ like other windows these are available in timber, metal, plastic or in combinations of these materials.

They can be constructed with centre jamb pivots enabling the sash to pivot or rotate in the horizontal plane or alternatively the pivots can be fixed in the head and sill of the frame so that the sash rotates in the vertical plane.

Typical Example ~

- adjustable ventilator fitted in top rail of sash
- 75 x 75 frame jamb
- heavy duty friction hinge with safety catches to window opening to lock it when reversed for window cleaning
- locking handle connected to espadrillo giving two locking points and night ventilation position
- groove for 32mm thick window board
- 150 x 75 hardwood sill
Bay Windows — these can be defined as any window with sidelights which projects in front of the external wall and is supported by a sill height wall. Bay windows not supported by a sill height wall are called oriel windows. They can be of any window type, constructed from any of the usual window materials and are available in three plan formats, namely square, splay and circular or segmental. Timber corner posts can be boxed, solid or jointed, the latter being the common method.

Typical Examples —

TYPICAL SQUARE BAY WINDOW (665mm projection)

60° SPLAY BAY WINDOW AND 45° SPLAY BAY WINDOW

TYPICAL 6 LIGHT CIRCULAR OR SEGMENTAL BAY WINDOW
Schedules — the main function of a schedule is to collect together all the necessary information for a particular group of components such as windows, doors and drainage inspection chambers. There is no standard format for schedules but they should be easy to read, accurate and contain all the necessary information for their purpose. Schedules are usually presented in a tabulated format which can be related to and read in conjunction with the working drawings.

Typical Example ~

<table>
<thead>
<tr>
<th>WINDOW SCHEDULE — Sheet 1 of 1</th>
<th>Drawn By: RC</th>
<th>Date: 14/4/01</th>
<th>Rev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Title & Number: Lane End Farm — H 341/80</td>
<td>Drg. Nos. C(31) 450–7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Type or catalogue ref.</th>
<th>Material</th>
<th>Overall size w x h</th>
<th>Glass</th>
<th>Ironmongery</th>
<th>Sill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>213 CV</td>
<td>hardwood</td>
<td>1200 x 1350</td>
<td>sealed units as supplied with frames</td>
<td>supplied with casements</td>
<td>2 cos. plain tiles subsill</td>
</tr>
<tr>
<td>4</td>
<td>309 CVC</td>
<td>ditto</td>
<td>1770 x 900</td>
<td>ditto</td>
<td>ditto</td>
<td>ditto</td>
</tr>
<tr>
<td>4</td>
<td>313 CVC</td>
<td>ditto</td>
<td>1770 x 1350</td>
<td>ditto</td>
<td>ditto</td>
<td>sill of frame</td>
</tr>
</tbody>
</table>
Window manufacturers identify their products with a notation that combines figures with numbers. The objective is to simplify catalogue entries, specification clauses and schedules. For example:

Notation will vary to some extent between the different joinery producers. The example of 313 CVC translates to:

3 = width divided into three units.
13 = first two dimensions of standard height, i.e. 1350mm.
C = casement.
V = ventlight.

Other common notations include:

N = narrow light.
P = plain (picture type window, i.e. no transom or mullion).
T = through transom.
S = sub-light, fixed.
VS = ventlight and sub-light.
F = fixed light.
B = bottom casement opening inwards.
RH/LH = right or lefthand as viewed from the outside.
Glass ~ this material is produced by fusing together soda, lime and silica with other minor ingredients such as magnesia and alumina. A number of glass types are available for domestic work and these include:

Clear Float ~ used where clear, undistorted vision is required. Available thicknesses range from 3mm to 25mm.

Clear Sheet ~ suitable for all clear glass areas but because the two faces of the glass are never perfectly flat or parallel some distortion of vision usually occurs. This type of glass is gradually being superseded by the clear float glass. Available thicknesses range from 3 mm to 6 mm.

Translucent Glass ~ these are patterned glasses, most having one patterned surface and one relatively flat surface. The amount of obscurity and diffusion obtained depends on the type and nature of pattern. Available thicknesses range from 4mm to 6mm for patterned glasses and from 5 mm to 10 mm for rough cast glasses.

Wired Glass ~ obtainable as a clear polished wired glass or as a rough cast wired glass with a nominal thickness of 7mm. Generally used where a degree of fire resistance is required. Georgian wired glass has a 12mm square mesh whereas the hexagonally wired glass has a 20mm mesh.

Choice of Glass ~ the main factors to be considered are:
1. Resistance to wind loadings. 2. Clear vision required.

Glazing Terminology ~
Glazing ~ the act of fixing glass into a frame or surround. In domestic work this is usually achieved by locating the glass in a rebate and securing it with putty or beading and should be carried out in accordance with the recommendations contained in the BS 6262 series: Glazing for buildings.

Timber Surrounds ~ linseed oil putty is the traditional material for sealing and retaining glass in wooden frames. It is a composite of crushed chalk and linseed oil (whiting). Rebate to be clean, dry and primed before glazing is carried out. Putty should be protected with paint within two weeks of application.

Metal Surrounds ~ metal casement putty if metal surround is to be painted - if surround is not to be painted a non-setting compound should be used.

A general purpose putty is also available. This combines the properties of the two types.
Double Glazing

Double Glazing — as its name implies this is where two layers of glass are used instead of the traditional single layer. Double glazing can be used to reduce the rate of heat loss through windows and glazed doors or it can be employed to reduce the sound transmission through windows. In the context of thermal insulation this is achieved by having a small air or argon gas-filled space within the range of 6 to 20 mm between the two layers of glass. The sealed double glazing unit will also prevent internal misting by condensation. If metal frames are used these should have a thermal break incorporated into their design. All opening sashes in a double glazing system should be fitted with adequate weather seals to reduce the rate of heat loss through the opening clearance gap.

In the context of sound insulation three factors affect the performance of double glazing. First, good installation to ensure airtightness, second, the weight of glass used and third, the size of air space between the layers of glass. The heavier the glass used the better the sound insulation and the air space needs to be within the range of 50 to 300 mm. Absorbent lining to the reveals within the air space will also improve the sound insulation properties of the system.

Typical Examples —

![Diagram of double glazing system]

- 10mm thick glass
- 6mm thick glass
- 6-20mm air space
- Neoprene glazing gaskets
- Glazing bead
- External mastic seal
- Butyl seal
- Aluminium spacer bar containing desiccant
- Sound absorbent lining

approximate ‘U’ values
- single glazing — 4.3 W/m²K
- double glazing — 2.5 W/m²K

approximate sound reduction
- 6 mm single glazing — 27 dB
- double glazing as shown — 42 dB
Secondary glazing of existing windows is an acceptable method for reducing heat energy losses at wall openings. Providing the existing windows are in a good state of repair, this is a cost-effective, simple method for upgrading windows to current energy efficiency standards. In addition to avoiding the disruption of removing existing windows, further advantages of secondary glazing include retention of the original window features, reduction in sound transmission and elimination of draughts. Applications are manufactured for all types of window, with sliding or hinged variations. The following details are typical of horizontal sliding sashes -
Double hung weight balanced vertical sliding timber sash windows ~ a feature of many listed buildings, particularly those representing our architectural heritage. Preservation of original design is important and must be maintained, but there should also be a regard for current standards of insulation. Replacement with modern double glazed frames and casements is out of character and in many situations may be prohibited under the Planning (Listed Buildings and Conservation Areas) Act.

Application ~ secondary glazing fitted internally will not impact visually on the external elevation. If required it can be reversed, i.e. it can be removed with minimal inconvenience. Accessibility to the original window remains unimpeded. The illustration shows the simplicity of application to the window type detailed on page 439. Some minor changes may be necessary to replace the staff bead with a larger section to accommodate the casement frame and to modify the inner lining accordingly. External traditional appearance is preserved with the benefit of improved sound and thermal insulation, better security and elimination of draughts.

Modified traditional sliding sash window ~

![Diagram of modified traditional sliding sash window]

- Parting bead
- Lower sash
- Extruded aluminium side hung hinged casement and frame
- Sash weight
- Parting slip
- Staff bead and inner lining modified if required to receive casement frame
Low emissivity or 'Low E' glass is specially manufactured with a surface coating to significantly improve its thermal performance. The surface coating has a dual function:

1. Allows solar short wave light radiation to penetrate a building.
2. Reflects long wave heat radiation losses back into a building.

Manufacturing processes:

1. Pyrolitic hard coat, applied on-line as the glass is made. Emissivity range, 0.15–0.20, e.g. Pilkington 'K'.
2. A sputtered soft coat applied after glass manufacture. Emissivity range, 0.05–0.10, e.g. Pilkington 'Kappafloat' and 'Suncool High Performance'.

Note: In relative terms, uncoated glass has a normal emissivity of about 0.90.

Indicative U-values for multi-glazed windows of 4 mm glass with a 16mm void width:

<table>
<thead>
<tr>
<th>Glazing type</th>
<th>uPVC or wood frame</th>
<th>metal frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double, air filled</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Double, argon filled</td>
<td>2.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Double, air filled Low E (0.20)</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Double, argon filled Low E (0.20)</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Double, air filled Low E (0.05)</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Double, argon filled Low E (0.05)</td>
<td>1.7</td>
<td>2.1</td>
</tr>
<tr>
<td>Triple, air filled</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Triple, argon filled</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Triple, air filled Low E (0.20)</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Triple, argon filled Low E (0.20)</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>Triple, air filled Low E (0.05)</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Triple, argon filled Low E (0.05)</td>
<td>1.3</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Notes:
1. A larger void and thicker glass will reduce the U-value, and vice versa.
2. Data for metal frames assumes a thermal break of 4 mm (see next page).
3. Hollow metal framing units can be filled with a closed cell insulant foam to considerably reduce U-values.
Extruded aluminium profiled sections are designed and manufactured to create lightweight hollow window (and door) framing members.

Finish – untreated aluminium is prone to surface oxidisation. This can be controlled by paint application, but most manufacturers provide a variable colour range of polyester coatings finished in gloss, satin or matt.

Thermal insulation – poor insulation and high conductivity are characteristics of solid profile metal windows. This is much less apparent with hollow profile outer members, as they can be considerably enhanced by a thermal infilling of closed cell foam.

Condensation – a high strength two-part polyurethane resin thermal break between internal and external profiles inhibits cold bridging. This reduces the opportunity for condensation to form on the surface. The indicative U-values given on the preceding page are based on a thermal break of 4mm. If this is increased to 16mm, the values can be reduced by up to 0.2 W/m² K.
Inert gas fills ~ argon or krypton. Argon is generally used as it is the least expensive and more readily available. Where krypton is used, the air gap need only be half that with argon to achieve a similar effect. Both gases have a higher insulating value than air due to their greater density.

Densities (kg/m³):
- Air = 1.20
- Argon = 1.66
- Krypton = 3.49

Argon and krypton also have a lower thermal conductivity than air.

Spacers ~ generally hollow aluminium with a desiccant or drying agent fill. The filling absorbs the initial moisture present in between the glass layers. Non-metallic spacers are preferred as aluminium is an effective heat conductor.

Approximate solar gains with ordinary float glass ~

‘Low E’ invisible coatings reduce the solar gain by up to one-third. Depending on the glass quality and cleanliness, about 10 to 15% of visible light reduction applies for each pane of glass.
Typical application ~

- Hollow profiles manufactured with a closed cell insulant foam/expanded polystyrene core.

- Synthetic rubber sealing strip
- ‘L’ shaped glazing bead/clip and seal/gasket
- Glazed units of 3 mm glass and 12 mm gap or 4 mm glass and 16 mm gap
- Air, argon or krypton filled gaps
- ‘L’ shaped glazing bead/clip and seal/gasket
- Middle and inner pane ‘E’ coated
- Synthetic rubber compression seal
- Synthetic rubber seal/gasket
- Casement frame*
- Window board, material optional
- Sill
- Hollow profile ‘plastic’ sections*, typically uPVC or glass fibres with polyester resin bonding

Further considerations:
* U-value potential, less than 1.0 W/m²K.
* ‘Low E’ invisible metallic layer on one pane of double glazing gives a similar insulating value to standard triple glazing (see page 453).
* Performance enhanced with blinds between wide gap panes.
* High quality ironmongery required due to weight of glazed frames.
* Improved sound insulation, particularly with heavier than air gap fill.
There are many manufacturers of triple glazed units, each with their own design profile. Some feature a wide gap between two of the glass panes to incorporate Venetian blinds. This type of curtaining is used to control solar radiation and heat gain. Glass specification and thickness may also vary depending on thermal and sound insulation requirements. Blinds can be actuated automatically in response to pre-set thermostatic control or overridden manually.

Typical Profile ~

Potential for Sound Insulation Effectiveness ~

<table>
<thead>
<tr>
<th>Glazing system</th>
<th>Max. sound reduction (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single glazed opening sash</td>
<td>20</td>
</tr>
<tr>
<td>Single glazed fixed light with weather strips</td>
<td>25</td>
</tr>
<tr>
<td>Double glazed, hermetically sealed with weather strips</td>
<td>35</td>
</tr>
<tr>
<td>Triple glazed, hermetically sealed, weather strips and blinds</td>
<td>45</td>
</tr>
</tbody>
</table>

Note: These units are considerably heavier than other window types, therefore they will need care in handling during site transportation. The manufacturer’s purpose made jamb fixings should be used.
In these critical locations, glazing must satisfy one of the following:

1. Breakage to leave only a small opening with small detachable particles without sharp edges.
2. Disintegrating glass must leave only small detached pieces.
3. Inherent robustness, e.g. polycarbonate composition. Annealed glass acceptable but with the following limitations:

<table>
<thead>
<tr>
<th>Thickness of annealed glass (mm)</th>
<th>Max. glazed area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height (m)</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>2.250</td>
</tr>
<tr>
<td>12</td>
<td>3.000</td>
</tr>
<tr>
<td>15</td>
<td>no limit</td>
</tr>
</tbody>
</table>

4. Panes in small areas, <250mm wide and <0.5 m² area. e.g. leaded lights (4 mm annealed glass) and Georgian pattern (6 mm annealed glass).
5. Protective screening as shown with lower bar of screen <75 mm above finished floor level.

Manifestation or Marking of Glass — another aspect of the critical location concept which frequently occurs with contemporary glazed features in a building. Commercial premises such as open plan offices, shops and showrooms often incorporate large walled areas of uninterrupted glass to promote visual depth, whilst dividing space or forming part of the exterior envelope. To prevent collision, glazed doors and walls must have prominent framing or intermediate transoms and mullions. An alternative is to position obvious markings at two levels, as shown below. Glass doors could have large pull/push handles and/or IN and OUT signs in bold lettering. Other areas may be adorned with company logos, stripes, geometric shapes, etc.

Critical Locations — The Building Regulations, Approved Document K, determines positions where potential personal impact and injury with glazed doors and windows are most critical. In these situations the glazing specification must incorporate a degree of safety such that any breakage would be relatively harmless. Additional measures in British Standard 6206 complement the Building Regulations and provide test requirements and specifications for impact performance for different classes of glazing material. See also BS 6262.

Refs.: Building Regulations, A.D. K5.2: Manifestation of glazing.
BS 6262 series: Glazing for buildings. Codes of practice.
Glass blocks have been used for some time as internal feature partitioning. They now include a variety of applications in external walls, where they combine the benefits of a walling unit with a natural source of light. They have also been used in paving to allow natural light penetration into basements.

Fire resistance, BS 476-22 - one hour integrity (load bearing capacity and fire containment).
Maximum panel size is 9m². Maximum panel dimension is 3 m.

Laying – glass blocks can be bonded like conventional brickwork, but for aesthetic reasons are usually laid with continuous vertical and horizontal joints.

Jointing – blocks are bedded in mortar with reinforcement from two nine-gauge galvanised steel wires in horizontal joints. Every third course for 150 mm units, every second course for 200 mm units and every course for 300 mm units. First and last course to be reinforced.

Mortar - dryer than for bricklaying as the blocks are non-absorbent. The general specification will include: White Portland Cement (BS EN 197-1), High Calcium Lime (BS EN 459-1) and Sand. The sand should be white quartzite or silica type. Fine silver sand is acceptable. An integral waterproofing agent should also be provided. Recommended mix ratios - 1 part cement: 0.5 part lime: 4 parts sand.

Doors — can be classed as external or internal. External doors are usually thicker and more robust in design than internal doors since they have more functions to fulfil.

Typical Functions —

Suitable finish and construction to withstand natural elements

Good fit to exclude wind and rain

Adequate locks and bolts for security

Design to give required thermal and sound insulation

Weathered at bottom to shed surface water

When closed, door should act in conjunction with surrounding fabric as an internal dividing element

Good fit to provide thermal comfort and privacy

Adequate lock for security

Colour and design to blend with internal decor

Main function — to provide access and egress through enclosing fabric of building

Glazed area to provide natural daylight to the interior

When closed door should act in conjunction with surrounding fabric as an enclosing element

Design to give required fire resistance

Main function — to provide access and egress through internal wall or partition

Design to give required thermal insulation, sound insulation and fire resistance

Architrave

Skirting
External Doors - these are available in a wide variety of types and styles in timber, aluminium alloy or steel. The majority of external doors are however made from timber, the metal doors being mainly confined to fully glazed doors such as ‘patio doors’.

Typical Examples of External Doors ~

![Diagram of door types](image-url)
Door Types

Typical examples of purpose made and non-standard external doors ~

Purposed Made
- glass panes
- muntin
- plywood panels
- top rail
- glazed bar
- frieze rail
- lock rail
- stile
- bottom rail

Tudor Style
- muntin
- bullseye pane
- flat solid panel
- intermediate rail
- stile
- bottom rail

Georgian Style
- solid bevelled and raised panels
- top rail
- frieze rail
- stile
- lock rail
- muntin
- bottom rail

Purpose Made
- top rail
- stile
- radial glazing bars
- frieze rail
- solid raised panels
- intermediate rail
- bottom rail
Door Frames ~ these are available for all standard external doors and can be obtained with a fixed solid or glazed panel above a door height transom. Door frames are available for doors opening inwards or outwards. Most door frames are made to the recommendations set out in BS 4787: Internal and external wood doorsets, door leaves and frames. Specification for dimensional requirements.

Typical Example ~

![Diagram of a typical door frame with dimensions and annotations.]

- Pinned mortice and tenon joint
- 83 x 57 softwood head
- Rebate for inward opening door
- Door frame built into external wall as work proceeds and secured with metal cramps at 450pc
- 83 x 57 softwood jambs
- 25 x 6 galvanised mild steel water bar bedded in mastic
- 121 x 44 hardwood weathered sill

TYPICAL DOOR FRAME

SILL SECTIONS
Door Ironmongery ~ available in a wide variety of materials, styles and finishers but will consist of essentially the same components:

Hinges or Butts ~ these are used to fix the door to its frame or lining and to enable it to pivot about its hanging edge.

Locks, Latches and Bolts ~ the means of keeping the door in its closed position and providing the required degree of security. The handles and cover plates used in conjunction with locks and latches are collectively called door furniture.

Letter Plates ~ fitted in external doors to enable letters, etc. to be deposited through the door.

Other items include Finger and Kicking Plates which are used to protect the door fabric where there is high usage.

Draught Excluders to seal the clearance gap around the edges of the door and Security Chains to enable the door to be partially opened and thus retain some security.

Typical Examples ~
Industrial Doors ~ these doors are usually classified by their method of operation and construction. There is a very wide range of doors available and the choice should be based on the following considerations:

1. Movement – vertical or horizontal.
2. Size of opening.
3. Position and purpose of door(s).
4. Frequency of opening and closing door(s).
5. Manual or mechanical operation.
6. Thermal and/or sound insulation requirements.
7. Fire resistance requirements.

Typical Industrial Door Types ~

1. Straight Sliding –

 ![Diagram of single, double, and multi-leaf sliding doors]

 These types can be top hung with a bottom guide roller or hung with bottom rollers and top guides – see page 468

2. Sliding / Folding –

 ![Diagram of multi-leaf end folding doors hung between and behind reveals]

 These types can be top hung with a bottom guide roller or hung with bottom rollers and top guides – see page 469

3. Shutters –

 ![Diagram of horizontal folding and roller shutters]

 Shutters can be installed between, behind or in front of the reveals – see page 470
Straight Sliding Doors ~ these doors are easy to operate, economic to maintain and present no problems for the inclusion of a wicket gate. They do however take up wall space to enable the leaves to be parked in the open position. The floor guide channel associated with top hung doors can become blocked with dirt, causing a malfunction of the sliding movement, whereas the rollers in bottom track doors can seize up unless regularly lubricated and kept clean. Straight sliding doors are available with either manual or mechanical operation.

Typical Example ~
Sliding/Folding Doors ~ these doors are an alternative format to the straight sliding door types and have the same advantages and disadvantages except that the parking space required for the opened door is less than that for straight sliding doors. Sliding/folding are usually manually operated and can be arranged in groups of two to eight leaves.

Typical Example ~
Shutters ~ horizontal folding shutters are similar in operation to sliding/folding doors but are composed of smaller leaves and present the same problems. Roller shutters however do not occupy any wall space but usually have to be fully opened for access. They can be manually operated by means of a pole when the shutters are self-coiling, operated by means of an endless chain winding gear or mechanically raised and lowered by an electric motor but in all cases they are slow to open and close. Vision panels cannot be incorporated into the roller shutter but it is possible to include a small wicket gate or door in the design.

Typical Details ~

![Diagrams of roller shutters and mechanisms]
Crosswall Construction ~ this is a form of construction where load bearing walls are placed at right angles to the lateral axis of the building, the front and rear walls being essentially non-load bearing cladding. Crosswall construction is suitable for buildings of up to five storeys high where the floors are similar and where internal separating or party walls are required such as in blocks of flats or maisonettes. The intermediate floors span longitudinally between the crosswalls providing the necessary lateral restraint and if both walls and floors are of cast in-situ reinforced concrete the series of 'boxes' so formed is sometimes called box frame construction. Great care must be taken in both design and construction to ensure that the junctions between the non-load bearing claddings and the crosswalls are weather tight. If a pitched roof is to be employed with the ridge parallel to the lateral axis an edge beam will be required to provide a seating for the trussed or common rafters and to transmit the roof loads to the crosswalls.

Typical Crosswall Arrangement Details ~
Advantages of Crosswall Construction:

1. Load bearing and non-load bearing components can be standardised and in some cases prefabricated giving faster construction times.
2. Fenestration between crosswalls unrestricted structurally.
3. Crosswalls although load bearing need not be weather resistant as is the case with external walls.

Disadvantages of Crosswall Construction:

1. Limitations of possible plans.
2. Need for adequate lateral ties between crosswalls.
3. Need to weather adequately projecting crosswalls.

Floors:

An in-situ solid reinforced concrete floor will provide the greatest rigidity, all other forms must be adequately tied to walls.
System ~ comprises quality controlled factory produced components of plain reinforced concrete walls and prestressed concrete hollow or solid core plank floors.

Site Assembly ~ components are crane lifted and stacked manually with the floor panel edges bearing on surrounding walls. Temporary support will be necessary until the units are ‘stitched’ together with horizontal and vertical steel reinforcing ties located through reinforcement loops projecting from adjacent panels. In-situ concrete completes the structural connection to provide full transfer of all forces and loads through the joint. Precast concrete stair flights and landings are located and connected to support panels by steel angle bracketing and in-situ concrete joints.

Typical ‘stitched’ joint between precast concrete crosswall components ~

![Diagram of crosswall construction with labels for components such as vertical reinforcement tie, joint seal, RC crosswall, PLAN VIEW, panel reinforcement looped at ends, RC external wall, cavity insulated as required, purpose-made wall tie in dovetail recess, movement joint (12 m max. spacing), external masonry cladding.]
Concept - a cost-effective simple and fast site assembly system using load-bearing partitions and external walls to transfer vertical loads from floor panels. The floor provides lateral stability by diaphragm action between the walls.

Application - precast reinforced concrete crosswall construction systems may be used to construct multi-storey buildings, particularly where the diaphragm floor load distribution is transferred to lift or stair well cores. Typical applications include schools, hotels, hostels, apartment blocks and hospitals. External appearance can be enhanced by a variety of cladding possibilities, including the traditional look of face brickwork secured to the structure by in-built ties. Internal finishing may be with paint or plaster, but it is usually dry lined with plasterboard.

Location of 'stitched' in-situ reinforced concrete ties ~

Fire resistance and sound insulation are achieved by density and quality of concrete. The thermal mass of concrete can be enhanced by applying insulation in between the external precast panel and the masonry or other cladding.
Framing ~ an industry-based prefabricated house manufacturing process permitting rapid site construction, with considerably fewer site operatives than traditional construction. This technique has a long history of conventional practice in Scandinavia and North America, but has only gained credibility in the UK since the 1960s. Factory-made panels are based on a stud framework of timber, normally ex. 100 × 50 mm, an outer sheathing of plywood, particleboard or similar sheet material, insulation between the framing members and an internal lining of plasterboard. An outer cladding of brickwork weatherproofs the building and provides a traditional appearance.

Assembly techniques are derived from two systems:

1. Balloon frame
2. Platform frame

A balloon frame consists of two-storey height panels with an intermediate floor suspended from the framework. In the UK, the platform frame is preferred with intermediate floor support directly on the lower panel. It is also easier to transport, easier to handle on site and has fewer shrinkage and movement problems.
Notes:

1. Cavity barriers prevent fire spread. The principal locations are between elements and compartments of construction (see B. Regs. A.D. B3).

2. Thermal bridging through solid framing may be reduced by using rigid EPS insulation and lighter 'I' section members of plywood or oriented strand board (OSB).
Framing ~ comprising inner leaf wall panels of standard cold-formed galvanised steel channel sections as structural support, with a lined inner face of vapour check layer under plasterboard. These panels can be site assembled, but it is more realistic to order them factory made. Panels are usually produced in 600 mm wide modules and bolted together on site. Roof trusses are made up from steel channel or sigma sections. See page 628 for examples of standard steel sections and BS EN 10162: Cold rolled steel sections.

Standard channel and panel.

Background/history ~ the concept of steel framing for house construction evolved in the early 1920s, but development of the lightweight concrete 'breeze' block soon took preference. Due to a shortage of traditional building materials, a resurgence of interest occurred again during the early post-war building boom of the late 1940s. Thereafter, steel became relatively costly and uncompetitive as a viable alternative to concrete block or timber frame construction techniques. Since the 1990s more efficient factory production processes, use of semi-skilled site labour and availability of economic cold-formed sections have revived an interest in this alternative means of house construction.
Typical Details

- Insulated cavity closer barrier (see Building Regs. A. D.: B3, Section 6 [Vol. 1] and 9 [Vol. 2]) and plywood bracket.
- Bolted channel section truss.

Advantages:
- Factory made, therefore produced to quality controlled standards and tolerances.
- Relatively simple to assemble on site – bolted connections in preformed holes.
- Dimensionally stable, consistent composition, insignificant movement.
- Unaffected by moisture, therefore will not rot.
- Does not burn.
- Inedible by insects.
- Roof spans potentially long relative to weight.

Disadvantages:
- Possibility of corrosion if galvanised protective layer is damaged.
- Deforms at high temperature, therefore unpredictable in fire.
- Electricity conductor – must be earthed.
Render ~ a mix of binder (cement) and fine aggregate (sand) with the addition of water and lime or a plasticiser to make the mix workable. Applied to walls as a decorative and/or waterproofing treatment.

Mix ratios ~ for general use, mix ratios are between 1:0.5:4–4.5 and 1:1:5–6 of cement, lime and sand. Equivalent using masonry cement and sand is 1:2.5–3.5 and 1:4–5. Unless a fine finish is required, coarse textured sharp sand is preferred for stability.

Background ~

Masonry – brick and block-work joints raked out 12 to 15 mm to provide a key for the first bonding coat. Metal mesh can be nailed to the surface as supplementary support and reinforcing.

Wood or similar sheeting – metal lathing, wire mesh or expanded metal of galvanised (zinc coated) or stainless steel secured every 300 mm. A purpose-made lathing is produced for timber-framed walls.

Concrete – and other smooth, dense surfaces can be hacked to provide a key or spatter-dashed. Spatter-dash is a strong mix of cement and sand (1:2) mixed into a slurry, trowelled roughly or thrown on to leave an irregular surface as a key to subsequent applications.

Three coat application to a masonry background
Number of coats (layers) and composition ~ in sheltered locations, one 10 mm layer is adequate for regular backgrounds. Elsewhere, two or possibly three separate applications are required to adequately weatherproof the wall and to prevent the brick or block-work joints from ‘grinning’ through. Render mixes should become slightly weaker towards the outer layer to allow for greater flexure at the surface, i.e. less opportunity for movement and shrinkage cracking.

Finishes ~ smooth, textured, rough-cast and pebble-dashed.

Smooth ~ fine sand and cement finished with a steel trowel (6 to 8 mm).

Textured ~ final layer finished with a coarse brush, toothed implement or a fabric roller (10 to 12 mm with 3 mm surface treated).

Rough-cast ~ irregular finish resulting from throwing the final coat onto the wall (6 to 10 mm).

Pebble or dry dash ~ small stones thrown onto a strong mortar finishing coat (10 to 12 mm).

Render application to a timber framed background

Ref. BS EN 13914 ~ 1: Design, preparation and application of external rendering and internal plastering. External rendering.
Traditional renders ~ a site-mixed sand base with a cement and/or lime binder combined with water to produce a workable mix. Mostly used to cover poor quality or inexpensive backgrounds, producing a reasonably waterproof outer surface for decorative treatment. Can also be a design choice.

Polymer modified renders ~ delivered to site in factory-premixed 20 or 25kg bags for the addition of water prior to application. Recipes vary, but in principle manufacturers combine polymeric additives with the base materials of sand and cement. These may include latexes or emulsions, water soluble polymer powders and resins. Polyvinyl acetate (PVA) is the synthetic adhesive generally used. PVA is more commonly known as a wood glue, but in modified renders it functions as an emulsion in water to partially replace cement. Some products also include anti-crack fibres as a reinforcement.

Background ~ existing or newly constructed substrate of render, masonry, concrete, timber or insulation slab (see page 576). Must be sound, reasonably level, free of friable material, algae, lichens and any other surface growths. A fungicidal wash and stabilising solution/primer can be applied to control surface suction.

Application ~ two-coat work for irregular surfaces and refurbishment. 8-10mm base coat reinforced with galvanised or stainless steel mesh secured to the wall. Woven glass-fibre mesh can also be used, generally embedded in the base coat over existing cracks or damaged areas.

Finish ~ 6-8mm over scratched base coat. Surface treatments as described for traditional renders.

Properties ~

Enhanced weatherproofing.
Vapour permeable.
Good resistance to impact.
Inherent adhesion.
Consistent mix produced in quality controlled factory conditions.
Suitable for a variety of backgrounds.
Claddings to External Walls ~ external walls of block or timber frame construction can be clad with tiles, timber boards or plastic board sections. The tiles used are plain roofing tiles with either a straight or patterned bottom edge. They are applied to the vertical surface in the same manner as tiles laid on a sloping surface (see pages 504 and 507) except that the gauge can be wider and each tile is twice nailed. External and internal angles can be formed using special tiles or they can be mitred. Timber boards such as matchboarding and shiplap can be fixed vertically to horizontal battens or horizontally to vertical battens. Plastic moulded board claddings can be applied in a similar manner. The battens to which the claddings are fixed should be treated with a preservative against fungi and beetle attack and should be fixed with corrosion resistant nails.

Typical Details ~
Shrinkage ~ timber is subject to natural movement (page 148). With slender cladding sections allowance must be made to accommodate this by drying to an appropriate moisture content before fixing, otherwise gaps will open between adjacent boards.

Fixing ~ round head galvanised or stainless steel nails will avoid corrosion and metal staining. Lost head nails should be avoided as these can pull through. Annular ring shank nails provide extra grip. Pneumatic gun fixing to be applied with care to ensure no surface damage from impact. Nail length to penetrate the support battens by at least 22 mm. Two and a half times board thickness is usually specified. Dense timbers such as Siberian larch, Douglas fir and hardwoods should be pre-drilled 2 mm over nail diameter. Double nailing may be required in very exposed situations.

Various Timber Cladding Profiles ~

External corner tiles are made to order as special fittings to standard plain tiles. In effect they are tile and a halfs turned through 90° (other angles can be made) and handed left or right, fixed alternately to suit the overlapping pattern.

An alternative is to accurately mitre cut the meeting sides of tiles. This requires pairs of tile and a halfs in alternate courses to maintain the bond. Lead soakers (1.75 mm) of at least 225 × 200 mm are applied to every course to weather the mitred cut edges. The top of each soaker is turned over the tiles and the bottom finished flush or slightly above the lower edge of tiles.
Internal corners are treated similarly to external corners by using special tiles of approximately tile and a half overall dimensions, turned through 90° (or other specified angle) in the opposing direction to external specials. These tiles are left and right handed and fixed alternately to vertical courses to maintain the overlapping bond.

Internal angles can also be formed with mitre cut tiles, with tile and a half tiles in alternate courses. Lead soakers (1.75 mm) of 175 × 175 mm minimum dimensions are placed under each pair of corner tiles to weather the cut edges. As with external soakers, the lead is discretely hidden by accurate mitre cutting and shaping of tiles.
Some standard patterned bottom edge tiles ~

165mm

Arrowhead

approx. D/4

Bullnose, beavertail or spade

165mm

Club

265mm

265mm

Scalloped or fishtail

Arrowhead

Club

Bullnose

Scalloped

Bullnose and arrowhead

Bullnose and scalloped

Club and scalloped

NB. May also be used as a roof-tiling feature, generally in two to three courses at 1.5 to 2.0 m intervals to relieve plain tiling.
Ordinary splay cutting to roof verge ~
Tile and a half tiles at the end of each course, cut to the undercloak course of roof tiling. A second nail hole can be drilled at the head of each cut tile for secure fixing to the parallel batten.

Winchester cutting to roof verge ~
More attractive than ordinary splay cutting. Two cut tiles are required at the end of each course, varying in size depending on the roof pitch. Tile and half tiles should be used for these to avoid narrow cuts.

A variation that also has two cut tiles at the end of each course, has the square (90°) edge of the first course of tiles next to the roof tiling undercloak course.
Appearance and concept ~ a type of fake brickwork made up of clay tiles side and head lapped over each other to create the impression of brickwork, but without the expense. Joints/pointing can be in lime mortar or left dry.

History ~ originated during the eighteenth century, when they were used quite frequently on timber framed buildings notably in Kent and Sussex. Possibly this was to update and improve deteriorated weatherboarding or to avoid the brick tax of 1784. This tax was repealed in 1835.

Application ~ restoration to mathematically tiled older structures and as a lightweight cladding to modern timber-framed construction where the appearance of a brickwork façade is required.

Application shown in a Flemish bond ~
Brick slips ~ thin bricks resembling tiles of 15 to 20mm thickness with face dimensions the same as standard bricks (see page 395) and a finish or texture to match. Other terminology includes brick tiles, brick cladding units, slip bricks and briquettes.

Application ~ used to maintain continuity of appearance where brickwork infill panels are supported by a reinforced concrete frame, as shown on page 699. Originally slips were cut from whole bricks, a time consuming and wasteful process no longer necessary, as most brick manufacturers make slips to complement their stock items. Other uses are as a cost effective dressing to inexpensive or repaired backgrounds and for use where it is too difficult to build with standard bricks.

Support system ~ profiled galvanised or stainless steel mesh secured with screws and nylon discs 300mm horizontally and 150mm vertically apart into a sound background. Slips are stuck to the mesh with a structural adhesive of epoxy mortar, a two-part mix of resin and hardener combined with a sand filler.

Note: Extruded polystyrene closed cell foam insulating panel 25 to 50mm in thickness, adhesive secured to the background.
Roofs --- Performance Requirements

- Roof coverings to provide adequate weather exclusion, have reasonable durability and be aesthetically acceptable.
- Roof to provide resistance to excessive heat loss, at least to the standard set out in Part L of the Building Regulations.
- Roof structure to provide resistance to failure due to over stressing. It must be able to support own self-weight, wind loads and imposed loads such as snow.
- Roof to provide the required degree of sound insulation.
- Roof to be accessible for maintenance.
- Provide adequate drainage of roof coverings.

Roof coverings to comply with Part B of the Building Regulations regarding fire spread.
Roofs ~ these can be classified as either:
Flat – pitch from 0° to 10°
Pitched – pitch over 10°

It is worth noting that for design purposes roof pitches over 70° are classified as walls.

Roofs can be designed in many different forms and in combinations of these forms, some of which would not be suitable and/or economic for domestic properties.

Basic Roof Forms

- Flashing to weather joint between roof and parapet
- Support wall projecting above roof level ~ the projection is called a parapet
- Skirting
- Small splayed kerb or water check to verge
- Roof slopes towards drainage edge or eaves - angle of slope governed by type of roof covering
- Gutter to collect discharged rainwater from roof and convey it to the rainwater pipe(s)
- Rainwater pipe conveys discharged rainwater to the drains
- Fascia
- Verge ~ the non-drained edge of a roof
- Coping
- Closing member of roof construction is called a fascia

FLAT ROOFS
Basic Roof Forms

THE MANSARD OR GAMBREL ROOF

A COMBINATION OF BASIC FORMS
Pitched Roofs - the primary functions of any domestic roof are to:

1. Provide an adequate barrier to the penetration of the elements.
2. Maintain the internal environment by providing an adequate resistance to heat loss.

A roof is in a very exposed situation and must therefore be designed and constructed in such a manner as to:

1. Safely resist all imposed loadings such as snow and wind.
2. Be capable of accommodating thermal and moisture movements.
3. Be durable so as to give a satisfactory performance and reduce maintenance to a minimum.

Component Parts of a Pitched Roof -

- valley - internal angle of a roof
- hip - external angle of a roof
- ridge
- hip tiles
- eaves fascia
- hip or jack rafters
- battens - fixing medium for roof coverings and underlay which acts as secondary barrier to elements
- roof covering - provides resistance to penetration of elements and conveys surface water to gutter at eaves
- ridge tile - capping to roof covering
- ridge board - spine of roof carcass
- gable end
- purlin - reduces rafter span
- rafters - support members for roof coverings
- verge - termination at a gable directs surface water back onto main roof area
Purlins ~ guide to minimum size (mm) relative to span and spacing:

<table>
<thead>
<tr>
<th>Span (m)</th>
<th>1.75</th>
<th>2.25</th>
<th>2.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>125 x 75</td>
<td>150 x 75</td>
<td>150 x 100</td>
</tr>
<tr>
<td>2.5</td>
<td>150 x 75</td>
<td>175 x 75</td>
<td>175 x 100</td>
</tr>
<tr>
<td>3.0</td>
<td>175 x 100</td>
<td>200 x 100</td>
<td>200 x 125</td>
</tr>
<tr>
<td>3.5</td>
<td>225 x 100</td>
<td>225 x 100</td>
<td>225 x 125</td>
</tr>
<tr>
<td>4.0</td>
<td>225 x 125</td>
<td>250 x 125</td>
<td>250 x 125</td>
</tr>
</tbody>
</table>
Timber Pitched Roofs up to 7.5 m Span - Types

LEAN-TO ROOF

- 32mm thick pitching plate fixed to wall
- 100 x 50 rafters at 400 c/c
- 100 x 50 wall plate
- 2.400 max.

COUPLE ROOF

- 32mm thick ridge board
- 100 x 50 rafters in pairs at 400 c/c
- 100 x 50 wall plate
- 3.600 max.

CLOSED COUPLE ROOF

- 32mm thick ridge board
- 150 x 50 rafters in pairs at 400 c/c
- 200 x 50 collars or ceiling joists at 400 c/c
- 100 x 50 wall plate
- 4.800 max.

COLLAR ROOF

- 32mm thick ridge board
- 100 x 50 rafters in pairs at 400 c/c
- 150 x 50 collars at 400 c/c
dovetail halving joint
- 100 x 50 wall plate
- 5.500 max.

Pitches of roofs to suit type of roof covering

Minimum sizes for members of domestic type roofs can be obtained from 'Span Tables for Solid Timber Members' published by TRADA Technology Ltd.
Timber Pitched Roofs up to 7.5 m Span - Types

32mm thick ridge board

100 x 50 rafters in pairs at 400 %

150 x 63 purlin at mid-span of rafter

100 x 50 struts at 1600 % fixed to purlin

100 x 50 hangers at 1600 % fixed to collar and binder

fascia fixed to rafters

sprocket fixed to rafter

100 x 50 wall plate

100 x 50 ceiling joists at 400 %

100 x 50 binder at mid-span of ceiling joist

100 x 50 collars at 1600 % fixed to rafters

Note: Cavity wall at eaves shown closed with blockwork, typical of pre-2000 construction. Current practice is shown on pages 507 and 515.

ALTERNATIVE PURLIN DETAIL

continuous tilting fillet fixed over rafters

hanger

binder

rafter

block beam filling

CLOSED EAVES

OPEN EAVES

NB. collars, struts and hangers occur at every 4th pair of rafters

DOUBLE RAFTER OR PURLIN ROOF
Roof Trusses - these are triangulated plane roof frames designed to give clear spans between the external supporting walls. They are usually prefabricated or partially prefabricated off site and are fixed at 1:800 centres to support purlins which accept loads from the infill rafters. See 'Note' previous page.

TYPICAL ROOF TRUSS DETAIL
Trussed Rafters ~ these are triangulated plane roof frames designed to give clear spans between the external supporting walls. They are delivered to site as a prefabricated component where they are fixed to the wall plates at 600 mm centres. Trussed rafters do not require any ridge boards or purlins since they receive their lateral stability by using larger tiling battens (50 × 25 mm) than those used on traditional roofs. See 'Note' on page 497.

Longitudinal ties (75 × 38) fixed over ceiling ties and under internal ties near to roof apex and rafter diagonal bracing (75 × 38) fixed under rafters at gable ends from eaves to apex may be required to provide stability bracing - actual requirements specified by manufacturer. Lateral restraint to gable walls at top and bottom chord levels in the form of mild steel straps at 2,000 maximum centres over 2 No. trussed rafters may also be required.
More economical for larger spans than with double rafters and ordinary purlins. Used where the size of purlins would be uneconomically large and/or an excessive number of struts, ties and hangers would be required.

Top and bottom flanges/chords are typically 100×100 mm or 100×75 mm and struts 100×75 mm.

The lattice frame can be faced with plasterboard or with plywood for additional strength.
Gambrel roofs are double pitched with a break in the roof slope. The pitch angle above the break is less than 45° relative to the horizontal, whilst the pitch angle below the break is greater. Generally, these angles are 30° and 60°.

Gambrels are useful in providing more attic headroom and frequently incorporate dormers and rooflights. They have a variety of constructional forms.

Typically —

Intermediate support can be provided in various ways as shown above. To create headroom for accommodation in what would otherwise be attic space, a double head plate and partition studding is usual. The collar beam and rafters can conveniently locate on the head plates or prefabricated trusses can span between partitions.
Valley construction and associated pitched roofing is used:

- to visually enhance an otherwise plain roof structure.
- where the roof plan turns through an angle (usually 90°) to follow the building layout or a later extension.
- at the intersection of main and projecting roofs above a bay window or a dormer window.

Construction may be by forming a framework of cut rafters trimmed to valley rafters as shown in the roof plan on page 495. Alternatively, and as favoured with building extensions, by locating a valley or lay board over the main rafters to provide a fixing for each of the jack rafters.
Sprockets may be provided at the eaves to reduce the slope of a pitched roof. Sprockets are generally most suitable for use on wide, steeply pitched roofs to:

- enhance the roof profile by creating a feature.
- to slow down the velocity of rainwater running off the roof and prevent it from overshooting the gutter.

Where the rafters overhang the external wall, taper cut timber sprockets can be attached to the top of the rafters. Alternatively, the ends of rafters can be birds mouthed onto the wall plate and short lengths of timber the same size as the rafters secured to the rafter feet. In reducing the pitch angle, albeit for only a short distance, it should not be less than the minimum angle recommended for specific roof coverings.
Roof Underlays

Roof Underlays ~ sometimes called sarking or roofing felt provides the barrier to the entry of snow, wind and rain blown between the tiles or slates. It also prevents the entry of water from capillary action.

Suitable Materials ~

Bitumen fibre-based felts ~ supplied in rolls 1 m wide and up to 25 m long. Traditionally used in house construction with a cold ventilated roof.

Breather or vapour permeable underlay ~ typically produced from HDPE fibre or extruded polypropylene fibre, bonded by heat and pressure. Materials permeable to water vapour are preferred as these do not need to be perforated to ventilate the roof space. Also, subject to manufacturer’s guidelines, traditional eaves ventilation may not be necessary. Underlay of this type should be installed taut across the rafters with counter battens support to the tile battens. Where counter battens are not used, underlay should sag slightly between rafters to allow rain penetration to flow under tile battens.

Underlays are fixed initially with galvanised clout nails or st/st staples but are finally secured with the tiling or slating batten fixings.
Double Lap Plain Tiles ~ these are the traditional tile covering for pitched roofs and are available made from clay and concrete and are usually called plain tiles. Plain tiles have a slight camber in their length to ensure that the tail of the tile will bed and not ride on the tile below. There are always at least two layers of tiles covering any part of the roof. Each tile has at least two nibs on the underside of its head so that it can be hung on support battens nailed over the rafters. Two nail holes provide the means of fixing the tile to the batten; in practice only every fourth course of tiles is nailed unless the roof exposure is high. Double lap tiles are laid to a bond so that the edge joints between the tiles are in the centre of the tiles immediately below and above the course under consideration.

Minimum pitch 35° machine-made, 45° hand-made.

Typical Plain Tile Details ~

For other types, shapes and sections see BS EN 1304: Clay roofing tiles and fittings. Product definitions and specifications.
Hand-made from extracted clay substrata. Sources of suitable clay in the UK are the brick making areas of Kent, Sussex and Leicestershire.

Tiles are shaped in a timber frame or clamp before being kiln fired at about 1000°C. Early examples of these tiles have been attributed to the Romans, but after they left the UK manufacture all but ceased until about the twelfth century. Historically and today, tile dimensions vary quite significantly, especially those from different regions and makers. In 1477 a Royal Charter attempted to standardise tiles to $10\frac{1}{2}'' \times 6\frac{1}{2}'' \times \frac{1}{2}''$ thick ($265 \times 165 \times 12$ mm) and this remains as the BS dimensions shown on the previous page. However, peg tile makers were set in their ways and retained their established local dimensions. This means that replacements have to be specifically produced to match existing tiles.

Typical regional sizes:

- **Sussex**: $9\frac{1}{2}'' \times 6\frac{1}{4}''$ (240 × 160 mm)
- **Kent**: $10'' \times 6''$ (255 × 150 mm)
- **Leicestershire**: $11'' \times 7''$ (280 × 180 mm)
Typical details (cold roof) ~

Purpose-made in-line tile ventilators spaced to provide equivalent of 5mm continuous gap positioned at high level.

Half round ridge tiles bedded in cm. mt. (1:3) butt jointed in length with ends of ridge tiles filled with mortar and tile slip inserts.

Under ridge top course tile 38 x 25 timber battens (see Note 2)

Plain tiles

Plain tiles nailed to battens every 4th course

Ventilation spacer

Plain tiles nailed to battens every 4th course

Margin = gauge

= tile length – lap

= 265 – 65

= 100mm

Note 1: Through ventilation is necessary to prevent condensation from occurring in the roof space. A vapour check can also help limit the amount of moisture entering the roof void.

Note 2: 50 x 25 where rafter spacing is 600mm.
Note 1: If a cavity closer is also required to function as a cavity barrier to prevent fire spread, it should provide at least 30 minutes’ fire resistance (B. Reg. A.D. B3 Section 6 [Vol. 1] and 9 [Vol. 2]).

Note 2: A breather membrane is an alternative to conventional bituminous felt as an under-tiling layer. It has the benefit of restricting liquid water penetration whilst allowing water vapour transfer from within the roof space. This permits air circulation without perforating the under-tiling layer.
Where a roof space is used for habitable space, insulation must be provided within the roof slope. Insulation above the rafters (as shown) creates a ‘warm roof’, eliminating the need for continuous ventilation. Insulation placed between the rafters creates a ‘cold roof’, where a continuous 50mm ventilation void above the insulation will assist in the control of condensation (see next page).

Suitable rigid insulants include; low density polyisocyanurate (PIR) foam, reinforced with long strand glass fibres, both faces bonded to aluminium foil with joints aluminium foil taped on the upper surface; high density mineral wool slabs over rafters with less dense mineral wool between rafters.

An alternative location for the breather membrane is under the counter battens. This is often preferred as the insulation board will provide uniform support for the underlay. Otherwise, extra insulation could be provided between the counter battens, retaining sufficient space for the underlay to sag between rafter positions to permit any rainwater penetration to drain to eaves.
Insulation in between rafters is an alternative to placing it above (see page 570). The following details show two possibilities, where if required supplementary insulation can be secured to the underside of rafters.

Vapour control layer ~ condensation occurs where warm moist air contacts a cold layer. This could be in the roof space above inhabited rooms, where permeable insulation will not prevent movement of moisture in air and vapour from condensing on the underside of traditional tile underlay (sarking felt) and bituminous felt flat roof coverings. Venting of the roof space (see pages 540 to 541) will control condensation.

Alternatively it can be controlled with a well sealed vapour control layer (for instance, foil [metallised polyester] backed plasterboard) incorporated in the ceiling lining and used with a vapour permeable (breather membrane) underlay to the tiling. Joints and openings in the vcl ceiling (e.g. cable or pipe penetrations) should be sealed, but if this is impractical ventilation should be provided to the underside of the tile underlay.
SIPs are prefabricated ‘sandwich’ panels that can be used as an alternative to traditional rafters or trusses for roof construction. They can also be used for structural wall panels. Surface layers of plywood or OSB are separated by a core of insulation. The outer face can be provided with counter battens for securing tile battens.

Properties ~
- High strength to weight ratio.
- Good thermal insulation.
- Continuity of insulation, no cold bridges.
- Good sound insulation.
- Fire-retardant core with improved resistance to fire by lining the inner face with plasterboard.
- Dimensionally coordinated.
- Factory cut to specification, including mitres and angles for ridge, valleys, hips, etc.
- Rapid and simple site assembly.

Panel size ~ typically 1.2m wide in lengths up to 8.0m.

Typical thermal insulation values ~

<table>
<thead>
<tr>
<th>Depth/thickness, exc. battens (mm)</th>
<th>U-value (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.35</td>
</tr>
<tr>
<td>150</td>
<td>0.25</td>
</tr>
<tr>
<td>200</td>
<td>0.20</td>
</tr>
<tr>
<td>250</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Key: EPS – Expanded polystyrene. PIR – Polyisocyanurate, rigid foam.
 PUR – Rigid polyurethane. OSB – Oriented strand board.
Double Lap Tiling

Typical Details ~

- **Underlay**
- **Half Round Ridge Tile**
- **Bonnet Hip Tiles**
 - Nailed and bedded in cement mortar (1:3) to hip
- **Tile Slip Bedded in Cement Mortar**
- **Eaves Tile Course**
- **Plain Tiles Bonded with Hip Tiles**

Hip Detail Using Bonnet Hip Tiles

- **Roofing Felt or Underlay**
- **Half Round Ridge Tile**
- **Half Round Hip Capping Bedded in 1:3**
- **Galvanised Hip Iron Screwed to Top of Hip Rafter**
- **Eaves Tile Course**
- **Plain Tiles Mitred Under Hip Capping**

Hip Detail Using Half Round Tiles

- **Curved Valley Tiles**
- **Underlay**
- **Plain Tiles**
- **Eaves Tile Course**

Valley Detail Using Curved Valley Tiles
Typical Details ~

70° angle turned 25 mm into brick joint

2 mm lead

STEPPED FLASHING

abutment wall

75°
gauge + lap

plain tiles

TYPICAL SOAKER

1.25 mm lead soakers

38 x 25 s/w timber battens fixed to 100 mm gauge

underlay

tile and a half tiles in alternate courses

stepped flashing dressed over upstand of soakers and wedged and pointed into brick joints

ABUTMENT DETAIL

underlay

plain tiles

single layer undercloak of plain tiles used sideways with surface tiles edge bedded over in cm, mt. (1:3) to give a neat finish with a slight tilt to direct rainwater back onto roof

38 x 25 s/w timber battens at 100 mm gauge

eaves course

tile and a half tiles in alternate courses

VERGE DETAIL
Single Lap Tiling — so called because the single lap of one tile over another provides the weather tightness as opposed to the two layers of tiles used in double lap tiling. Most of the single lap tiles produced in clay and concrete have a tongue and groove joint along their side edges and in some patterns on all four edges which forms a series of interlocking joints and therefore these tiles are called single lap interlocking tiles. Generally there will be an overall reduction in the weight of the roof covering when compared with double lap tiling but the batten size is larger than that used for plain tiles and as a minimum every tile in alternate courses should be twice nailed, although a good specification will require every tile to be twice nailed. The gauge or batten spacing for single lap tiling is found by subtracting the end lap from the length of the tile.

Typical Single Lap Tiles ~

ROLL TYPE TILE
- minimum pitch 30°
- head lap 75mm
- side lap 30mm
- gauge 343mm
- linear coverage 300mm

TROUGH TYPE TILE
- minimum pitch 15°
- head lap 75mm
- side lap 38mm
- gauge 338mm
- linear coverage 292mm
Typical Details ~

Hips — can be finished with a half round tile as a capping as shown for double lap tiling on page 512.

Valleys — these can be finished by using special valley trough tiles or with a lead lined gutter — see manufacturer’s data.
Slates ~ slate is a natural dense material which can be split into thin sheets and cut to form a small unit covering suitable for pitched roofs in excess of 25° pitch. Slates are graded according to thickness and texture, the thinnest being known as ‘Bests’. These are of 4 mm nominal thickness. Slates are laid to the same double lap principles as plain tiles. Ridges and hips are normally covered with half round or angular tiles whereas valley junctions are usually of mitred slates over soakers. Unlike plain tiles every course is fixed to the battens by head or centre nailing, the latter being used on long slates and on pitches below 35° to overcome the problem of vibration caused by the wind which can break head nailed long slates.

Typical Details ~

\[
\text{NB. Gauge for centre nailed slates} = \frac{(\text{slate length} - \text{lap})}{2}.
\]
The UK has been supplied with its own slate resources from quarries in Wales, Cornwall and Westermorland. Imported slate is also available from Spain, Argentina and parts of the Far East.

e.g. Countess slate, 510 × 255 mm laid to a 30° pitch with 75 mm head lap.

Batten gauge = \(\frac{\text{slate length} - \text{lap}}{2}\)
\[= \frac{510 - 75}{2} = 218 \text{ mm}.\]

Holing gauge = batten gauge + head lap + 8 to 15 mm,
\[= 218 + 75 + (8 \text{ to } 15 \text{ mm}) = 301 \text{ to } 308 \text{ mm}.\]

Side lap = \(\frac{255}{2} = 127 \text{ mm}.\)

Margin = batten gauge of 218 mm.

Eaves course length = head lap + margin = 293 mm.
Traditional slate names and sizes (mm) -

Empress 650 × 400 Wide Viscountess 460 × 255
Princess 610 × 355 Viscountess 460 × 230
Duchess 610 × 305 Wide Ladies 405 × 255
Small Duchess 560 × 305 Broad Ladies 405 × 230
Marchioness 560 × 280 Ladies 405 × 205
Wide Countess 510 × 305 Wide Headers 355 × 305
Countess 510 × 255 Headers 355 × 255
... 510 × 230 Small Ladies 355 × 203
... 460 × 305 Narrow Ladies 355 × 180

Sizes can also be cut to special order.

Generally, the larger the slate, the lower the roof may be pitched. Also, the lower the roof pitch, the greater the head lap.

<table>
<thead>
<tr>
<th>Slate quality</th>
<th>Thickness (mm)</th>
<th>Weight at 75mm head lap (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>Medium strong</td>
<td>5</td>
<td>Thereafter in proportion to thickness</td>
</tr>
<tr>
<td>Heavy</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Extra heavy</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof pitch (degrees)</th>
<th>Min. head lap (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>115</td>
</tr>
<tr>
<td>25</td>
<td>85</td>
</tr>
<tr>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>45</td>
<td>65</td>
</tr>
</tbody>
</table>

See also:

1. BS EN 12326-1: Slate and stone products for discontinuous roofing and cladding. Product specification.
2. Slate producers' catalogues.
Roof hip examples –

- Close mitred hip, roof pitch > 30°
- Hip rafter
- Jack rafter
- Underlay in two layers, overlapping at least 300mm each side of hip
- 50 x 25mm batten
- 1.25mm lead soaker under each pair of mitred slates
- Opposing pairs of mitre cut slates
- Eaves course
- Standard slate

Mitred hip with clay or concrete hip tiles

- Hip rafter
- Jack rafter
- Double layer of underlay at hip, at least 300mm overlap each side of hip
- Mitred slates
- Concrete or clay hip tile mortar bedded over mitred slates
- Hip iron at eaves
Roof valley examples -

1.25 mm lead soakers, min. 150 mm wide at head and at least half slate width at bottom

Mitre cut valley
Limitations:
1. Roof pitch >45°
2. Valley angle <90°
3. Valley length <6m

Alternatives

NB. In swept valleys, cut and tapered slates are interleaved with 1.25 mm lead soakers.
Materials - water reed (Norfolk reed), wheat straw (Spring or Winter), Winter being the most suitable. Wheat for thatch is often known as wheat reed, long straw or Devon reed. Other thatches include rye and oat straws, and sedge. Sedge is harvested every fourth year to provide long growth, making it most suitable as a ridging material.

There are various patterns and styles of thatching, relating to the skill of the thatcher and local traditions.

Typical details -

The material composition of thatch with its natural voids and surface irregularities provides excellent insulation when dry and compact. However, when worn with possible accumulation of moss and rainwater, the U-value is less reliable. Thatch is also very vulnerable to fire. Therefore, in addition to imposing a premium, insurers may require application of a surface fire retardant and a fire insulant underlay.
Flat Roofs ~ these roofs are very seldom flat with a pitch of 0° but are considered to be flat if the pitch does not exceed 10°. The actual pitch chosen can be governed by the roof covering selected and/or by the required rate of rainwater discharge off the roof. As a general rule the minimum pitch for smooth surfaces such as asphalt should be 1:80 or 0°-43' and for sheet coverings with laps 1:60 or 0°-57'.

Methods of Obtaining Falls ~

1. Joists cut to falls

![Diagram of joists cut to falls]

- decking fixed to joists
- joist
- flat soffit

Simple to fix but could be wasteful in terms of timber unless two joists are cut from one piece of timber.

2. Joists laid to falls

![Diagram of joists laid to falls]

- decking fixed to joists
- joist
- sloping soffit

Economic and simple but sloping soffit may not be acceptable, but this could be hidden by a flat suspended ceiling.

3. Firrings with joist run

![Diagram of firrings with joist run]

- decking fixed to firrings
- firring
- fall
- joist
- 12 mm minimum flat soffit

Simple and effective but does not provide a means of natural cross ventilation. Usual method employed.

4. Firrings against joist run

![Diagram of firrings against joist run]

- decking fixed to firrings
- firring
- fall
- joist
- 50 mm minimum flat soffit

Simple and effective but uses more timber than 3 but does provide a means of natural cross ventilation.

Wherever possible joists should span the shortest distance of the roof plan.
Timber Roof Joists ~ the spacing and sizes of joists is related to the loadings and span. Actual dimensions for domestic loadings can be taken direct from recommendations in Approved Document A or they can be calculated as shown for timber beam designs. Strutting between joists should be used if the span exceeds 2.400 to restrict joist movements and twisting.

Typical Eaves Details ~

TYPICAL VERGE DETAILS - WARM DECK

TYPICAL ABUTMENT DETAILS - WARM DECK

Further details ~

Note: Insulation type and thickness varies with application and situation.
Typical spans and loading for flat roof joists of general structural (GS) grade ~

<table>
<thead>
<tr>
<th>Sawn size (mm x mm)</th>
<th>400</th>
<th>450</th>
<th>600</th>
<th>400</th>
<th>450</th>
<th>600</th>
<th>400</th>
<th>450</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 x 125</td>
<td>1.80</td>
<td>1.79</td>
<td>1.74</td>
<td>1.74</td>
<td>1.71</td>
<td>1.65</td>
<td>1.68</td>
<td>1.65</td>
<td>1.57</td>
</tr>
<tr>
<td>38 x 150</td>
<td>2.35</td>
<td>2.33</td>
<td>2.27</td>
<td>2.27</td>
<td>2.25</td>
<td>2.18</td>
<td>2.21</td>
<td>2.18</td>
<td>2.09</td>
</tr>
<tr>
<td>38 x 175</td>
<td>2.88</td>
<td>2.85</td>
<td>2.77</td>
<td>2.77</td>
<td>2.74</td>
<td>2.64</td>
<td>2.68</td>
<td>2.64</td>
<td>2.53</td>
</tr>
<tr>
<td>38 x 200</td>
<td>3.47</td>
<td>3.43</td>
<td>3.29</td>
<td>3.33</td>
<td>3.28</td>
<td>3.16</td>
<td>3.21</td>
<td>3.16</td>
<td>3.02</td>
</tr>
<tr>
<td>38 x 225</td>
<td>4.08</td>
<td>4.03</td>
<td>3.71</td>
<td>3.90</td>
<td>3.84</td>
<td>3.56</td>
<td>3.75</td>
<td>3.66</td>
<td>3.43</td>
</tr>
<tr>
<td>50 x 125</td>
<td>2.06</td>
<td>2.05</td>
<td>2.00</td>
<td>2.00</td>
<td>1.98</td>
<td>1.93</td>
<td>1.95</td>
<td>1.93</td>
<td>1.86</td>
</tr>
<tr>
<td>50 x 150</td>
<td>2.68</td>
<td>2.65</td>
<td>2.59</td>
<td>2.59</td>
<td>2.58</td>
<td>2.47</td>
<td>2.51</td>
<td>2.47</td>
<td>2.38</td>
</tr>
<tr>
<td>50 x 175</td>
<td>3.27</td>
<td>3.25</td>
<td>3.14</td>
<td>3.14</td>
<td>3.10</td>
<td>2.99</td>
<td>3.04</td>
<td>2.99</td>
<td>2.86</td>
</tr>
<tr>
<td>50 x 200</td>
<td>3.93</td>
<td>3.86</td>
<td>3.61</td>
<td>3.76</td>
<td>3.70</td>
<td>3.47</td>
<td>3.62</td>
<td>3.56</td>
<td>3.35</td>
</tr>
<tr>
<td>50 x 225</td>
<td>4.60</td>
<td>4.47</td>
<td>4.07</td>
<td>4.38</td>
<td>4.30</td>
<td>3.91</td>
<td>4.21</td>
<td>4.13</td>
<td>3.78</td>
</tr>
<tr>
<td>63 x 100</td>
<td>1.67</td>
<td>1.66</td>
<td>1.63</td>
<td>1.63</td>
<td>1.61</td>
<td>1.57</td>
<td>1.59</td>
<td>1.93</td>
<td>1.86</td>
</tr>
<tr>
<td>63 x 125</td>
<td>2.31</td>
<td>2.29</td>
<td>2.24</td>
<td>2.24</td>
<td>2.21</td>
<td>2.15</td>
<td>2.17</td>
<td>2.15</td>
<td>2.07</td>
</tr>
<tr>
<td>63 x 150</td>
<td>2.98</td>
<td>2.95</td>
<td>2.87</td>
<td>2.87</td>
<td>2.84</td>
<td>2.74</td>
<td>2.78</td>
<td>2.74</td>
<td>2.63</td>
</tr>
<tr>
<td>63 x 175</td>
<td>3.62</td>
<td>3.59</td>
<td>3.41</td>
<td>3.48</td>
<td>3.43</td>
<td>3.28</td>
<td>3.36</td>
<td>3.30</td>
<td>3.16</td>
</tr>
<tr>
<td>63 x 200</td>
<td>4.34</td>
<td>4.29</td>
<td>3.90</td>
<td>4.15</td>
<td>4.08</td>
<td>3.75</td>
<td>3.99</td>
<td>3.92</td>
<td>3.62</td>
</tr>
<tr>
<td>63 x 225</td>
<td>5.00</td>
<td>4.82</td>
<td>4.39</td>
<td>4.82</td>
<td>4.64</td>
<td>4.22</td>
<td>4.62</td>
<td>4.48</td>
<td>4.08</td>
</tr>
<tr>
<td>75 x 125</td>
<td>2.50</td>
<td>2.48</td>
<td>2.42</td>
<td>2.42</td>
<td>2.40</td>
<td>2.32</td>
<td>2.35</td>
<td>2.32</td>
<td>2.24</td>
</tr>
<tr>
<td>75 x 150</td>
<td>3.23</td>
<td>3.19</td>
<td>3.11</td>
<td>3.11</td>
<td>3.07</td>
<td>2.96</td>
<td>3.00</td>
<td>2.96</td>
<td>2.84</td>
</tr>
<tr>
<td>75 x 175</td>
<td>3.91</td>
<td>3.87</td>
<td>3.61</td>
<td>3.75</td>
<td>3.69</td>
<td>3.47</td>
<td>3.61</td>
<td>3.55</td>
<td>3.35</td>
</tr>
<tr>
<td>75 x 200</td>
<td>4.66</td>
<td>4.53</td>
<td>4.13</td>
<td>4.45</td>
<td>4.36</td>
<td>3.97</td>
<td>4.28</td>
<td>4.20</td>
<td>3.84</td>
</tr>
<tr>
<td>75 x 225</td>
<td>5.28</td>
<td>5.09</td>
<td>4.65</td>
<td>5.09</td>
<td>4.90</td>
<td>4.47</td>
<td>4.92</td>
<td>4.74</td>
<td>4.32</td>
</tr>
</tbody>
</table>

Dead weight of decking and ceiling, excluding the self-weight of the joists (kg/m²)

<table>
<thead>
<tr>
<th>Spacing of joists (mm c/c)</th>
<th>< 50</th>
<th>50–75</th>
<th>75–100</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. See pages 38 and 39 for material dead weights.
2. See pages 141 and 142 for softwood classification and grades.
Timber Boards — traditional decking, rarely used now as manufactured composite boards are less expensive in material cost and installation time. Softwood boards should be at least 19mm finished thickness on joists spaced at up to 450mm centres. Tongued and grooved boards are preferred to plain edge boards as butt jointed plain edge boards may tend to warp and deform. Boards should be tightly clamped, securely nailed with nail heads punched below the surface. Countersunk screw fixings are an alternative.

Plywood — exterior grade boarding often specified as WBP (water boiled proof), a reference to the bonding quality of the adhesive securing the ply veneers. Fixed on all four edges, requiring noggins/struts between the joists. BS EN 636.

Particle Boards — general term for a variety of board materials derived from wood shavings and parings. Fixed with nails or screws as appropriate, as indicated for plywood.

Wood chipboard — Susceptible to movement and possibly decay if exposed to dampness. Therefore should be specified as moisture resistant to BS EN 312 types C3, C4 or C5. Usually identified by a dull green colour. Available pre-felted, i.e. with a factory-applied bituminous felt layer.

Oriented strand board (OSB) — a favoured alternative to chipboard as it is more stable in moist conditions. BS EN 300 types 3 and 4.

Cement bonded particle board — another alternative that has a high density and greater moisture resistance than other particle boards. BS EN 634–2.

Woodwool Slabs — composed of wood fibre shreds bonded together with cement. Produced in a variety of thicknesses, but for roof decking the minimum thickness is 50mm to satisfy strength requirements when accessed. Widths of 600mm are produced in lengths up to 4m. BS EN 13168.

Further information on composite board materials is on pages 860 and 861.
Conservation of Energy ~ this can be achieved in two ways:

1. Cold Deck † insulation is placed on the ceiling lining, between joists. See pages 523 and 525 for details. A metallised polyester lined plasterboard ceiling functions as a vapour control layer, with a minimum 50 mm air circulation space between insulation and decking. The air space corresponds with eaves vents and both provisions will prevent moisture buildup, condensation and possible decay of timber.

2. (a) Warm Deck † rigid* insulation is placed below the waterproof covering and above the roof decking. The insulation must be sufficient to maintain the vapour control layer and roof members at a temperature above dewpoint, as this type of roof does not require ventilation.

(b) Inverted Warm Deck † rigid* insulation is positioned above the waterproof covering. The insulation must be unaffected by water and capable of receiving a stone dressing or ceramic pavings.

* Resin bonded mineral fibre roof boards, expanded polystyrene or polyurethane slabs.

Typical Warm Deck Details ~
Material ~ bitumen is found naturally in ground deposits on its own or as a component of asphalt. It is also produced during distillation of crude oil.

Composition ~ originally based on rag fibres as reinforcement to hot bitumen impregnated during manufacture. Modern bituminous felts have a matrix of glass fibre or polyester matting as reinforcement to a stabilising bitumen coating on both sides. These materials provide an effective binding and have superseded rags as a more robust base. The upper surface is lightly coated with sand or fine mineral granules to prevent the sheet from sticking to itself when rolled. Standard dimensions are rolls of 1m width in lengths of 8 to 10 m. Thickness varies depending on specification, but is usually about 3 to 4 mm. During manufacture some polymer modification is included with the bitumen. This is to reduce rigidity, making the material more flexible, workable and durable. Additives can be elastomers of atactic-polypropylene (APP) or styrene-butadiene-styrene (SBS).

Application ~ multi-layers, usually three, preferably in material specified to BS EN 13707 and laid to the recommendations of BS 8217. The first layer is laid at right angles to the fall commencing at the eaves. If the decking is timber, plywood or a wood composite, the first layer can be secured with large flat head nails, subsequent layers bonded together with hot molten bitumen. Side laps are at least 50 mm with 75 mm minimum laps at upper and lower ends. A variation known as torch-on is for use with specially made sheet. This is heated to the underside to produce a wave of molten bitumen as the sheet is unrolled. Timber product decking is not suitable for torch-on applications due to the fire risk, unless the surface is pre-felted and taped.

Finish ~ limestone, light-coloured shingle or granite chippings of 10 to 12 mm are suitable as weatherproofing, protection from solar radiation and resistance to fire. These are bonded to the surface with a cold or hot molten bitumen solution.
Composition – a natural fine-grained material from sedimentary deposits in parts of Derbyshire, Leicestershire and Shropshire. A variation mined mainly in France known as rock asphalt is extracted from bitumen impregnated sandstone and limestone. The base material is often modified to create a composite material. Additives include limestone to improve stability and oil to reduce hardness and brittleness. Synthetic or natural fibres can be added for reinforcement. For transportation and storage, asphalt is cast into blocks. On site the blocks are heated in a cauldron to about 200°C. Molten asphalt is transferred by bucket and spread manually with a wooden trowel.

Application – this consists of two layers of mastic asphalt laid breaking joints and built up to a minimum thickness of 20 mm and should be laid to the recommendations of BS 8218. The mastic asphalt is laid over an isolating membrane of black sheathing felt which should be laid loose with 50 mm minimum overlaps.

Typical Details –

Ref. BS 8218: Code of practice for mastic asphalt roofing.
Milled Lead Sheet — produced from refined lead to an initial thickness of about 125 mm. Thereafter it is rolled and cut to 12,000 m lengths, 2,400 m wide into the following thicknesses and categories:

- Other dimensions — cut widths between 75 mm and 600 mm in coils.
- Density — approximately 11,325 kg/m³.
- Application (colour marking) —
 - Green and yellow — soakers.
 - Blue, red and black — flat roof covering in small, medium and large areas respectively (see table on page 534).
 - White and orange — lead lining to walls as protection from X-rays or for sound insulation, but can be used for relatively large areas of roof covering.

<table>
<thead>
<tr>
<th>BS 1178* Code No.</th>
<th>BS EN 12588/standard milled thickness (mm)</th>
<th>Weight (kg/m²)</th>
<th>Colour marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.25/1.32</td>
<td>14.17/14.97</td>
<td>Green</td>
</tr>
<tr>
<td>-</td>
<td>1.50/1.59</td>
<td>17.00/18.03</td>
<td>Yellow</td>
</tr>
<tr>
<td>4</td>
<td>1.75/1.80</td>
<td>19.84/20.41</td>
<td>Blue</td>
</tr>
<tr>
<td>5</td>
<td>2.00/2.24</td>
<td>22.67/25.40</td>
<td>Red</td>
</tr>
<tr>
<td>6</td>
<td>2.50/2.65</td>
<td>28.34/30.05</td>
<td>Black</td>
</tr>
<tr>
<td>7</td>
<td>3.00/3.15</td>
<td>34.02/35.72</td>
<td>White</td>
</tr>
<tr>
<td>8</td>
<td>3.50/3.55</td>
<td>39.69/40.26</td>
<td>Orange</td>
</tr>
</tbody>
</table>

*BS 1178: Specification for milled sheet lead and strip for building purposes. This BS has been superseded by BS EN 12588: Lead and lead alloys. Rolled lead sheet for building purposes. The former BS codes are replaced with lead sheet thicknesses between 1.25 and 3.50 millimetres. They are included here, as these codes remain common industry reference. Codes originated before metrication as the approximate weight of lead sheet in pounds per square foot (lb/ft²), e.g. 3 lb/ft² became Code 3.
Thermal Movement ~ the coefficient of linear expansion for lead is $0.0000297 \left(2.97 \times 10^{-6}\right)$ for every degree Kelvin.

E.g. If the exposure temperature range throughout a year is from $-10\,^\circ C$ to $35\,^\circ C$ ($45K$), then a $2.000\, m$ length of sheet lead could increase by: $0.0000297 \times 45 \times 2 = 0.00267\, m$, or $2.67\, mm$.

Over time this movement will cause fatigue stress, manifesting in cracking. To prevent fracture, a smooth surface underlay should be used and the areas of lead sheet limited with provision of joints designed to accommodate movement.

Underlay ~ placed over plywood or similar smooth surface decking, or over rigid insulation boards. Bitumen impregnated felt or waterproof building paper have been the established underlay, but for new work a non-woven, needle punched polyester textile is now generally preferred.

Fixings ~ clips, screws and nails of copper, brass or stainless steel.

Jointing ~ for small areas such as door canopies and dormers where there is little opportunity for thermal movement, a simply formed welt can be used if the depth of rainwater is unlikely to exceed the welt depth.

Welted joint

Jointing to absorb movement:

- Wood cored rolls in the direction of the roof slope (see next page).
- Drips at right angles to and across the roof slope (see next page).
Lead is a soft and malleable material. A skilled craftsman (traditionally a plumber) can manipulate lead sheet with hand tools originally made from dense timber such as boxwood, but now produced from high-density polythene. This practice is known as 'bossing' the lead to the profiles shown. Alternatively, the lead sheet can be cut and welded to shape.

Selection of lead working tools ~

Dresser
Setting-in stick
Chase wedge
Mallet
Bossing stick
Bending stick
Spacing of wood cored rolls and drips varies with the thickness specification of lead sheet. The following is a guide:

<table>
<thead>
<tr>
<th>BS EN 12588 thickness (mm)</th>
<th>Maximum distance between drips (mm) [A]</th>
<th>Maximum distance between rolls (mm) [B]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25 and 1.50</td>
<td>Use for soakers only</td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>1500</td>
<td>500</td>
</tr>
<tr>
<td>2.00</td>
<td>2000</td>
<td>600</td>
</tr>
<tr>
<td>2.50</td>
<td>2250</td>
<td>675</td>
</tr>
<tr>
<td>3.00</td>
<td>2500</td>
<td>675</td>
</tr>
<tr>
<td>3.50</td>
<td>3000</td>
<td>750</td>
</tr>
</tbody>
</table>

Typical flat roof plan (page 491)
Single Ply Membranes ~ durable, resilient, flexible and lightweight sheet materials composed mainly of synthetic polymers. Some are reinforced with glass fibres depending on application and coverage area. A backing of glass fibre or polyester matting is often provided as a bonding interface.

Thickness ~ generally between 1 and 2 mm.

Fixing ~ product manufacturer’s recommended adhesive applied to the sub-surface. Purpose made mechanical fixing devices are an alternative in situations that may be exposed to wind lift.

Materials ~ Polyvinyl chloride (PVC).
 Thermoplastics: Thermoplastic polyolefin (TPO).
 Chlorinated polyethylene (CPE).
 Ethylene interpolymer (EIP).
 Copolymer alloy (CPA).
 Acrylonitrile butadiene polymer (NBP).

Other Considerations ~
• PVC membranes can be solvent adhesive bonded at overlaps or hot air welded.
• Thermoplastics are hot air welded at seams and overlaps (homogenous jointing at about 400 to 500°C).
• Ethylene propylene diene monomer (EPDM) is a thermoset synthetic rubber that can only be adhesive sealed. Application of heat would physically break it down.

Typical Detail ~

Note: ‘Warm deck’ shown. ‘Cold deck’ construction details on pages 523 and 525.
Application
hand held low voltage electric element welder (see note below)
pressure applied by hand roller
PVC single ply membrane

Side lap
150mm
40mm min. polyfused heat weld

End lap
100mm
40mm min. polyfused heat weld

Eaves
metal trim and fixing over edge fillet

Abutment
lead apron and dpc in wall
plastic or aluminium alloy fixing strip

Notes:
• Hand held welder and roller used mainly for small detail areas. Automatic (manually directed) welder/roller more effective for continuous seaming.
• See Note re. warm and cold deck construction on preceding page.
A dormer is the framework for a vertical window constructed from the roof slope. It may be used as a feature, but is more likely as an economical and practical means for accessing light and ventilation to an attic room. Dormers are normally external with the option of a flat or pitched roof. Frame construction is typical of the following illustrations, with connections made by traditional housed and tenoned joints or simpler galvanised steel brackets and hangers.
Dormer Window Types

Section through gable ended external dormer
A graceful interruption to the routine of a pitched roof, derived from thatched roofs where the thatch is swept over window openings. Other suitable coverings are timber shingles, plain tiles and small slates.

Main roof pitch \(\geq 50^\circ \). Eyebrow pitch \(\geq 35^\circ \).

Transition curve should be smooth with span to height ratio \(> 8:1 \). Less is possible, but may prove impractical and disproportionate.

Possible profile ~

A-B is a line through the centre of the window opening.
A-D radius is positioned to clear the window head.
C-D radius is established near window base in continuity to A-D.

A purpose-made gluelam beam can be used to create the transition curve, effectively extending the wall plate to receive the eyebrow rafters. The curved beam for an intermediate eyebrow may be supported on joist hangers to double trimming rafters each side.
Air carries water vapour, the amount increasing proportionally with the air temperature. As the water vapour increases so does the pressure and this causes the vapour to migrate from warmer to cooler parts of a building. As the air temperature reduces, so does its ability to hold water and this manifests as condensation on cold surfaces. Insulation between living areas and roof spaces increases the temperature differential and potential for condensation in the roof void.

Condensation can be prevented by either of the following:

* Providing a vapour control layer on the warm side of any insulation.
* Removing the damp air by ventilating the colder area.

The most convenient form of vapour layer is vapour check plasterboard which has a moisture resistant lining bonded to the back of the board. A typical patented product is a foil or metallised polyester backed plasterboard in 9.5 and 12.5 mm standard thicknesses. This is most suitable where there are rooms in roofs and for cold deck flat roofs. Ventilation is appropriate to larger roof spaces.
Roof Ventilation – provision of eaves ventilation alone should allow adequate air circulation in most situations. However, in some climatic conditions and where the air movement is not directly at right angles to the building, moist air can be trapped in the roof apex. Therefore, supplementary ridge ventilation is recommended.

Insulation at ceiling level (1)
\[S = \text{span} < 10\text{m for roof pitches 15°-35°} \]

Insulation at ceiling level (2)
\[S = \text{span} \geq 10\text{m for roof pitches 15°-35°} \]
Any span for roof pitches > 35°

Insulation at ceiling level and central dividing wall
Roof pitches > 15° for any span

NB. Ventilation dimensions shown relate to a continuous strip (or equivalent) of at least the given gap.

BRE report - Thermal Insulation: avoiding risks (3rd. edn).
Lateral Restraint – stability of gable walls and construction at the eaves, plus integrity of the roof structure during excessive wind forces, requires complementary restraint and continuity through 30×5 mm cross-sectional area galvanised steel straps.

Exceptions may occur if the roof:

1. exceeds 15° pitch, and
2. is tiled or slated, and
3. has the type of construction known locally to resist gusts, and
4. has ceiling joists and rafters bearing onto support walls at not more than 1.2 m centres.

Application ~

Woodworm infestation of untreated structural timbers is common. However, the smaller woodborers such as the abundant Furniture beetle are controllable. It is the threat of considerable damage potential from the House Longhorn beetle that has forced many local authorities in Surrey and the fringe areas of adjacent counties to seek timber preservation listing in the Building Regulations (see Table 1 in the above reference). Prior to the introduction of pretreated timber (c. 1960s), the House Longhorn beetle was once prolific in housing in the south of England, establishing a reputation for destroying structural roof timbers, particularly in the Camberley area.

House Longhorn beetle data:
Latin name † Hylotrupes bajulus
Life cycle - Mature beetle lays up to 200 eggs on rough surface of untreated timber. After two to three weeks, larvae emerge and bore into wood, preferring sapwood to denser growth areas. Up to 10 years in the damaging larval stage. In three weeks, larvae change to chrysalides to emerge as mature beetles in summer to reproduce.
Timber appearance - powdery deposits (frass) on the surface and the obvious mature beetle flight holes.

Beetle appearance -

Other woodborers:
Furniture beetle - dark brown, 6–8 mm long, lays 20–50 eggs on soft or hardwoods. Boreholes only 1–2 mm diameter.
Lyctus powder post beetle - reddish brown, 10–15 mm long, lays 70–200 eggs on sapwood of new hardwood. Boreholes only 1–2 mm in diameter.
Death-watch beetle - dark brown, sometimes speckled in lighter shades. Lays 40–80 eggs on hardwood. Known for preferring the oak timbers used in old churches and similar buildings.
Boreholes about 3 mm diameter.
Preservation ~ treatment of timber to prevent damage from House Longhorn beetle.

In the areas specified (see previous page), all softwood used in roof structures including ceiling joists and any other softwood fixings should be treated with insecticide prior to installation. Specific chemicals and processes have not been listed in the Building Regulations since the 1976 issue. Timber treatment then was either:

- Vacuum/pressure impregnation with a blend of copper, chromium and arsenic (CCA), known commercially as ‘tanalising’.
- Diffusion with sodium borate (boron salts).
- Steeping (min. 10 mins.) in organic solvent wood preservative.
- Steeping or soaking in tar oil (creosote). This has limitations due to staining of adjacent surfaces.

The current edition of Approved Document A (Structure) to the Building Regulations refers to guidance on preservative treatments in the British Wood Preserving and Damp-Proofing Association’s Manual. Other guidance is provided in:

BS 5707: Specification for preparation for wood preservatives in organic solvents.

BS EN 117: Wood preservatives.

Insect treatment adds about 10% to the cost of timber and also enhances its resistance to moisture. Other parts of the structure (e.g. floors and partitions) are less exposed to woodworm damage as they are enclosed. Also, there is a suggestion that if these areas received treated timber, the toxic fumes could be harmful to the health of building occupants. Current requirements for through ventilation in roofs have the added benefit of discouraging wood boring insects, as they prefer draught-free damp areas.

Note: EU directive CEN/TC 38 prohibits the use of CCA preservative for domestic applications and in places where the public may be in contact with it.
Green roofs ~ green with reference to the general appearance of plant growths and for being environmentally acceptable. Part of the measures for constructing sustainable and ecologically friendly buildings.

Categories:
- Extensive ~ a relatively shallow soil base (typically 50 mm) and lightweight construction. Maximum roof pitch is 40° and slopes greater than 20° will require a system of baffles to prevent the soil moving. Plant life is limited by the shallow soil base to grasses, mosses, herbs and sedum (succulents, generally with fleshy leaves producing pink or white flowers).
- Intensive ~ otherwise known as a roof garden. This category has a deeper soil base (typically 400 mm) that will provide for landscaping features, small ponds, occasional shrubs and small trees. A substantial building structure is required for support and it is only feasible to use a flat roof.

Advantages:
- Absorbs and controls water run-off.
- Integral thermal insulation.
- Integral sound insulation.
- Absorbs air pollutants, dust and CO₂.
- Passive heat storage potential.

Disadvantages:
- Weight.
- Maintenance.

Construction ~ the following buildup will be necessary to fulfil the objectives and to create stability:
- Vapour control layer above the roof structure.
- Rigid slab insulation.
- Root resilient waterproof under-layer.
- Drainage layer.
- Filter.
- Growing medium (soil).
- Vegetation (grass, etc.)

NB. Examples of both extensive and intensive green roof construction are shown on the next page.
Typical extensive roof buildup ~

- grass/sedum
- soil
- filter layer or fleece
- drainage layer*
- waterproof membrane
- insulation
- vapour control layer
- reinforced concrete roof structure

* typically, expanded polystyrene with slots

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight (kg/m²)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vcl</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>insulation</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>membrane</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>drainage layer</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>filter</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>soil</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>turf</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>147 kg/m²</td>
<td>181 mm</td>
</tr>
</tbody>
</table>

147 kg/m² saturated weight x 9.81 = 1442 N/m² or 1.44 kN/m²

Typical intensive roof buildup ~

- plants, shrubs and grasses
- soil substrate up to 450 mm
- filter layer or fleece
- drainage layer
- water retention fleece over waterproof membrane
- insulation
- vapour control layer
- reinforced concrete roof structure

Depth to vcl. approximately 560 mm at about 750 kg/m² saturated weight. 750 kg/m² x 9.81 = 7358 N/m² or 7.36 kN/m².
Thermal insulation of external elements of construction is measured in terms of thermal transmittance rate, otherwise known as the U-value. It is the amount of heat energy in watts transmitted through one square metre of construction for every one degree Kelvin between external and internal air temperature, i.e. W/m²K.

U-values are unlikely to be entirely accurate, due to:

* the varying effects of solar radiation, atmospheric dampness and prevailing winds.
* inconsistencies in construction, even with the best of supervision.
* ‘bridging’ where different structural components meet, e.g. dense mortar in lightweight blockwork.

Nevertheless, calculation of the U-value for a particular element of construction will provide guidance as to whether the structure is thermally acceptable. The Building Regulations, Approved Document L, Conservation of fuel and power, determines acceptable energy efficiency standards for modern buildings, with the objective of limiting the emission of carbon dioxide and other burnt gases into the atmosphere.

The U-value is calculated by taking the reciprocal of the summed thermal resistances (R) of the component parts of an element of construction:

$$U = \frac{1}{\sum R} = \frac{1}{W/m^2K}$$

R is expressed in m²K/W. The higher the value, the better a component's insulation. Conversely, the lower the value of U, the better the insulative properties of the structure.

Building Regulations, Approved Document references:
L1A, Work in new dwellings.
L1B, Work in existing dwellings.
L2A, Work in new buildings other than dwellings.
L2B, Work in existing buildings other than dwellings.
Thermal resistances (R) are a combination of the different structural, surface and air space components which make up an element of construction. Typically:

\[
U = \frac{1}{R_{so} + R_1 + R_2 + R_a + R_3 + R_4 \text{ etc...} + R_{si}[m^2K/W]}
\]

Where:
- \(R_{so}\) = Outside or external surface resistance.
- \(R_1, R_2, \text{ etc.}\) = Thermal resistance of structural components.
- \(R_a\) = Air space resistance, e.g. wall cavity.
- \(R_{si}\) = Internal surface resistance.

The thermal resistance of a structural component (\(R_1, R_2, \text{ etc.}\)) is calculated by dividing its thickness (L) by its thermal conductivity (\(\lambda\)), i.e.

\[
R(m^2K/W) = \frac{L(m)}{\lambda(W/mK)}
\]

E.g. 1. A 102 mm brick with a conductivity of 0.84 W/mK has a thermal resistance (R) of: \(0.102 \div 0.84 = 0.121\) m²K/W.

E.g. 2.

![Diagram of thermal insulation layers: R₁ - 215 mm brickwork, λ = 0.84 W/mK, R₉₀ = 0.055 m²K/W, R₂ - 13 mm render and dense plaster, λ = 0.50 W/mK, Rₘᵢ = 0.123 m²K/W.]

NB. the effect of mortar joints in the brickwork can be ignored, as both components have similar density and insulative properties.

\[
U = \frac{1}{R_{so} + R_1 + R_2 + R_{si}} \quad R_1 = 0.215 \div 0.84 = 0.256 \\
R_2 = 0.013 \div 0.50 = 0.026
\]

\[
U = \frac{1}{0.055 + 0.256 + 0.026 + 0.123} = 2.17 W/m^2K
\]
Typical values in: m²K/W

Internal surface resistances (R_{si}):
- Walls - 0.123
- Floors or ceilings for upward heat flow - 0.104
- Floors or ceilings for downward heat flow - 0.148
- Roofs (flat or pitched) - 0.104

External surface resistances (R_{so}):

<table>
<thead>
<tr>
<th>Surface</th>
<th>Sheltered</th>
<th>Normal</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall - high emissivity</td>
<td>0.080</td>
<td>0.055</td>
<td>0.030</td>
</tr>
<tr>
<td>Wall - low emissivity</td>
<td>0.110</td>
<td>0.070</td>
<td>0.030</td>
</tr>
<tr>
<td>Roof - high emissivity</td>
<td>0.070</td>
<td>0.045</td>
<td>0.020</td>
</tr>
<tr>
<td>Roof - low emissivity</td>
<td>0.090</td>
<td>0.050</td>
<td>0.020</td>
</tr>
<tr>
<td>Floor - high emissivity</td>
<td>0.070</td>
<td>0.040</td>
<td>0.020</td>
</tr>
</tbody>
</table>

- **Sheltered** - town buildings to 3 storeys.
- **Normal** - town buildings 4 to 8 storeys and most suburban premises.
- **Severe** - > 9 storeys in towns.
 - > 5 storeys elsewhere and any buildings on exposed coasts and hills.

Air space resistances (R_{a}):
- Pitched or flat roof space - 0.180
- Behind vertical tile hanging - 0.120
- Cavity wall void - 0.180
- Between high and low emissivity surfaces - 0.300
- Unventilated/sealed - 0.180

Emissivity relates to the heat transfer across and from surfaces by radiant heat emission and absorption effects. The amount will depend on the surface texture, the quantity and temperature of air movement across it, the surface position or orientation and the temperature of adjacent bodies or materials. High surface emissivity is appropriate for most building materials. An example of low emissivity would be bright aluminium foil on one or both sides of an air space.
<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m^3)</th>
<th>Conductivity (λ) (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALLS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boarding (hardwood)</td>
<td>700</td>
<td>0.18</td>
</tr>
<tr>
<td>(softwood)</td>
<td>500</td>
<td>0.13</td>
</tr>
<tr>
<td>Brick outer leaf</td>
<td>1700</td>
<td>0.84</td>
</tr>
<tr>
<td>inner leaf</td>
<td>1700</td>
<td>0.62</td>
</tr>
<tr>
<td>Calcium silicate board</td>
<td>875</td>
<td>0.17</td>
</tr>
<tr>
<td>Ceramic tiles</td>
<td>2300</td>
<td>1.30</td>
</tr>
<tr>
<td>Concrete</td>
<td>2400</td>
<td>1.93</td>
</tr>
<tr>
<td>Brick outer leaf (lightweight)</td>
<td>1200</td>
<td>0.38</td>
</tr>
<tr>
<td>(reinforced)</td>
<td>2400</td>
<td>2.50</td>
</tr>
<tr>
<td>Concrete block (lightweight)</td>
<td>600</td>
<td>0.18</td>
</tr>
<tr>
<td>(mediumweight)</td>
<td>1400</td>
<td>0.53</td>
</tr>
<tr>
<td>Cement mortar (protected)</td>
<td>1750</td>
<td>0.88</td>
</tr>
<tr>
<td>(exposed)</td>
<td>1750</td>
<td>0.94</td>
</tr>
<tr>
<td>Fibreboard</td>
<td>350</td>
<td>0.08</td>
</tr>
<tr>
<td>Gypsum plaster (dense)</td>
<td>1300</td>
<td>0.57</td>
</tr>
<tr>
<td>Gypsum plaster (lightweight)</td>
<td>600</td>
<td>0.16</td>
</tr>
<tr>
<td>Plasterboard</td>
<td>950</td>
<td>0.16</td>
</tr>
<tr>
<td>Tile hanging</td>
<td>1900</td>
<td>0.84</td>
</tr>
<tr>
<td>Rendering</td>
<td>1300</td>
<td>0.57</td>
</tr>
<tr>
<td>Sandstone</td>
<td>2600</td>
<td>2.30</td>
</tr>
<tr>
<td>Wall ties (st/st)</td>
<td>7900</td>
<td>17.00</td>
</tr>
<tr>
<td>ROOFS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerated concrete slab</td>
<td>500</td>
<td>0.16</td>
</tr>
<tr>
<td>Asphalt</td>
<td>1900</td>
<td>0.60</td>
</tr>
<tr>
<td>Bituminous felt in 3 layers</td>
<td>1700</td>
<td>0.50</td>
</tr>
<tr>
<td>Sarking felt</td>
<td>1700</td>
<td>0.50</td>
</tr>
<tr>
<td>Stone chippings</td>
<td>1800</td>
<td>0.96</td>
</tr>
<tr>
<td>Tiles (clay)</td>
<td>2000</td>
<td>1.00</td>
</tr>
<tr>
<td>(concrete)</td>
<td>2100</td>
<td>1.50</td>
</tr>
<tr>
<td>Wood wool slab</td>
<td>500</td>
<td>0.10</td>
</tr>
<tr>
<td>Material</td>
<td>Density (kg/m³)</td>
<td>Conductivity (λ) (W/mK)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>FLOORS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast concrete</td>
<td>2000</td>
<td>1.33</td>
</tr>
<tr>
<td>Hardwood block/strip</td>
<td>700</td>
<td>0.18</td>
</tr>
<tr>
<td>Plywood/particle board</td>
<td>650</td>
<td>0.14</td>
</tr>
<tr>
<td>Screed</td>
<td>1200</td>
<td>0.41</td>
</tr>
<tr>
<td>Softwood board</td>
<td>500</td>
<td>0.13</td>
</tr>
<tr>
<td>Steel tray</td>
<td>7800</td>
<td>50.00</td>
</tr>
<tr>
<td>INSULATION:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded polystyrene board</td>
<td>20</td>
<td>0.035</td>
</tr>
<tr>
<td>Mineral wool batt/slab</td>
<td>25</td>
<td>0.038</td>
</tr>
<tr>
<td>Mineral wool quilt</td>
<td>12</td>
<td>0.042</td>
</tr>
<tr>
<td>Phenolic foam board</td>
<td>30</td>
<td>0.025</td>
</tr>
<tr>
<td>Polyurethane board</td>
<td>30</td>
<td>0.025</td>
</tr>
<tr>
<td>Urea formaldehyde foam</td>
<td>10</td>
<td>0.040</td>
</tr>
<tr>
<td>GROUND:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay/silt</td>
<td>1250</td>
<td>1.50</td>
</tr>
<tr>
<td>Sand/gravel</td>
<td>1500</td>
<td>2.00</td>
</tr>
<tr>
<td>Homogeneous rock</td>
<td>3000</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Notes:

1. For purposes of calculating U-values, the effect of mortar in external brickwork is usually ignored as the density and thermal properties of bricks and mortar are similar.

2. Where butterfly wall ties are used at normal spacing in an insulated cavity ≤ 75 mm, no adjustment is required to calculations. If vertical twist ties are used in insulated cavities >75 mm, 0.020 W/m²K should be added to the U-value.

3. Thermal conductivity (λ) is a measure of the rate that heat is conducted through a material under specific conditions (W/mK).
* Tables and charts – Insulation manufacturers’ design guides and technical papers (walls, roofs and ground floors).
* Calculation using the Proportional Area Method (walls and roofs).
* Calculation using the Combined Method – BS EN ISO 6946 (walls and roofs).
* Calculation using BS EN ISO 13370 (ground floors and basements).

Tables and charts – these apply where specific U-values are required and standard forms of construction are adopted. The values contain appropriate allowances for variable heat transfer due to different components in the construction, e.g. twisted pattern wall ties and non-uniformity of insulation with the interruption by ceiling joists. The example below shows the tabulated data for a solid ground floor with embedded insulation of $\lambda = 0.03 \text{ W/mK}$:

![Diagram of solid concrete ground floor]

Typical table for floor insulation:

<table>
<thead>
<tr>
<th>P/A</th>
<th>0.020</th>
<th>0.025</th>
<th>0.030*</th>
<th>0.035</th>
<th>0.040</th>
<th>0.045</th>
<th>W/mK</th>
<th>mm ins.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>61</td>
<td>76</td>
<td>91</td>
<td>107</td>
<td>122</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9*</td>
<td>60</td>
<td>75</td>
<td>90</td>
<td>105</td>
<td>120</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>58</td>
<td>73</td>
<td>88</td>
<td>102</td>
<td>117</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>57</td>
<td>71</td>
<td>85</td>
<td>99</td>
<td>113</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>54</td>
<td>68</td>
<td>82</td>
<td>95</td>
<td>109</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>51</td>
<td>64</td>
<td>77</td>
<td>90</td>
<td>103</td>
<td>115</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

90 mm of insulation required.

Various applications to different ground floor situations are considered in BS EN ISO 13370. The following is an example of a solid concrete slab in direct contact with the ground. The data used is from the previous page.

Floor section

- Perimeter = 18 m (exposed)
- Floor area = 20 m²
- λ for 90 mm insulation = 0.03 W/mK
- Characteristic floor dimension = B^1
- $B^1 = \text{Floor area} + \left(\frac{1}{2} \exp \text{perimeter}\right) = 20 + 9 = 2.222 \text{m}$

Formula to calculate total equivalent floor thickness for uninsulated and insulated all over floor:

$$dt = w + \lambda (R_{si} + R_f + R_{so})$$

where:
- $dt = \text{total equivalent floor thickness (m)}$
- $w = \text{wall thickness (m)}$
- $\lambda = \text{thermal conductivity of soil (W/mK)}$ [see page 552]
- $R_{si} = \text{internal surface resistance (m²K/W)}$ [see page 550]
- $R_f = \text{insulation resistance (0.09 + 0.03 = 3 m²K/W)}$
- $R_{so} = \text{external surface resistance (m²K/W)}$ [see page 550]

Uninsulated:
$$dt = 0.3 + 1.5 (0.148 + 0 + 0.04) = 0.582 \text{m}$$

Insulated:
$$dt = 0.3 + 1.5 (0.148 + 3 + 0.04) = 5.082 \text{m}$$

Formulae to calculate U-values ~

Uninsulated or poorly insulated floor, $dt < B^1$:

$$U = (2\lambda) + [(\pi B^1) + dt] \times \ln [(\pi B^1 + dt) + 1]$$

Well insulated floor, $dt \geq B^1$:

$$U = \lambda + [(0.457 \times B^1) + dt]$$

where:
- $U = \text{thermal transmittance coefficient (W/m²/K)}$
- $\lambda = \text{thermal conductivity of soil (W/mK)}$
- $B^1 = \text{characteristic floor dimension (m)}$
- $dt = \text{total equivalent floor thickness (m)}$
- $\ln = \text{natural logarithm}$

Uninsulated floor ~

$$U = (2 \times 1.5) + [(3.142 \times 2.222) + 0.582] \times \ln [(3.142 \times 2.222) + 0.582 + 1]$$

$$U = 0.397 \times \ln 12.996 = 1.02 \text{ W/m²K}$$

Insulated floor ~

$$U = 1.5 + [(0.457 \times 2.222) + 5.082] = 1.5 + 6.097 = 0.246 \text{ W/m²K}$$

NB. Compares with the tabulated figure of 0.250 W/m²K on the previous page.
Proportional Area Method (Wall)

A standard block with mortar is $450 \times 225 \text{ mm} = 101250 \text{ mm}^2$

A standard block format of $440 \times 215 \text{ mm} = 94600 \text{ mm}^2$

The area of mortar per block = 6650 mm^2

Proportional area of mortar = $\frac{6650}{101250} \times 100 = 6.57\% (0.066)$

Therefore the proportional area of blocks = $93.43\% (0.934)$

Thermal resistances (R):

Outer leaf + insulation (unbridged)
- $R_{so} = 0.055$
- brickwork = 0.122
- insulation = $2.631 \div 2.808$
 - $\times 100\% = 2.808$
- $R_{si} = 0.123$

Inner leaf (unbridged)
- blocks = 0.555
- plaster = 0.081
- $R_{si} = 0.123$
 - $\times 93.43\% = 0.709$

Inner leaf (bridged)
- mortar = 0.114
- plaster = 0.081
- $R_{si} = 0.123$
 - $\times 6.57\% = 0.021$

$U = \frac{1}{\sum R} = \frac{1}{2.808 + 0.709 + 0.021} = 0.283 \text{ W/m}^2\text{K}$
Combined Method (Wall)

This method considers the upper and lower thermal resistance (R) limits of an element of structure. The average of these is reciprocated to provide the U-value.

Formula for upper and lower resistances = \(\frac{1}{\sum(F_x + R_x)} \)

Where:
- \(F_x \) = Fractional area of a section
- \(R_x \) = Total thermal resistance of a section

Using the wall example from the previous page:

Upper limit of resistance (R) through section containing blocks –
\((R_{so}, 0.055) + (brkwk, 0.122) + (ins, 2.631) + (blocks, 0.555) + (plstr, 0.081) + (R_{si}, 0.123) = 3.567 \text{ m}^2\text{K/W}\)

Fractional area of section (F) = 93.43% or 0.934

Upper limit of resistance (R) through section containing mortar –
\((R_{so}, 0.055) + (brkwk, 0.122) + (ins, 2.631) + (mortar, 0.114) + (plstr, 0.081) + (R_{si}, 0.123) = 3.126 \text{ m}^2\text{K/W}\)

Fractional area of section (F) = 6.57% or 0.066

The upper limit of resistance =
\(\frac{1}{\sum(0.943 + 3.567) + (0.066 + 3.126)} = 3.533 \text{ m}^2\text{K/W} \)

Lower limit of resistance (R) is obtained by summating the resistance of all the layers –
\((R_{so}, 0.055) + (brkwk, 0.122) + (ins, 2.631) + (bridged layer, 1 ÷ [0.934 ÷ 0.555] + [0.066 ÷ 0.114] = 0.442) + (plstr, 0.081) + (R_{si}, 0.123) = 3.454 \text{ m}^2\text{K/W}\)

Total resistance (R) of wall is the average of upper and lower limits = \((3.533 + 3.454) ÷ 2 = 3.493 \text{ m}^2\text{K/W}\)

U-value = \(\frac{1}{R} = \frac{1}{3.493} = 0.286 \text{ W/m}^2\text{K} \)

NB. Both proportional area and combined method calculations require an addition of 0.020 W/m²K to the calculated U-value. This is for vertical twist type wall ties in the wide cavity. See page 400 and note 2 on page 552.
Proportional Area Method (Roof)

Notes:
1. The air space in the loft area is divided between pitched and ceiling components, i.e. \(R_a = 0.180 \div 2 = 0.090 \text{m}^2\text{K}/\text{W}. \)
2. The U-value is calculated perpendicular to the insulation, therefore the pitched component resistance is adjusted by multiplying by the cosine of the pitch angle, i.e. 0.819.
3. Proportional area of bridging parts (rafters and joists) is 50 \(\div 400 = 0.125 \) or 12.5%.
4. With an air space resistance value \((R1) \) of 0.120 \(\text{m}^2\text{K}/\text{W} \) between tiles and felt, the resistance of the tiling may be ignored.

Thermal resistance \((R) \) of the pitched component:

<table>
<thead>
<tr>
<th>Raftered part</th>
<th>Non-raftered part</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{so} = 0.045)</td>
<td>(R_{so} = 0.045)</td>
</tr>
<tr>
<td>(R_1 = 0.120)</td>
<td>(R_1 = 0.120)</td>
</tr>
<tr>
<td>(R_2 = 0.004)</td>
<td>(R_2 = 0.004)</td>
</tr>
<tr>
<td>(R_3 = 0.714)</td>
<td>(R_a = 0.090)</td>
</tr>
<tr>
<td>(R_a = \frac{0.090}{0.973 \times 12.5%} = 0.122)</td>
<td>(0.259 \times 87.5% = 0.227)</td>
</tr>
</tbody>
</table>

Total resistance of pitched components =
\((0.122 + 0.227) \times 0.819 = 0.286 \text{m}^2\text{K}/\text{W} \)

Thermal resistance \((R) \) of the ceiling component:

<table>
<thead>
<tr>
<th>Joisted part</th>
<th>Fully insulated part</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{si} = 0.104)</td>
<td>(R_{si} = 0.104)</td>
</tr>
<tr>
<td>(R_6 = 0.081)</td>
<td>(R_6 = 0.081)</td>
</tr>
<tr>
<td>(R_5 = 0.714)</td>
<td>(R_4 = 5.000 \ (200 \text{ mm}))</td>
</tr>
<tr>
<td>(R_4 = 2.500 \ (100 \text{ mm}))</td>
<td>(R_a = 0.090)</td>
</tr>
<tr>
<td>(R_a = \frac{0.090}{3.489 \times 12.5%} = 0.436)</td>
<td>(5.275 \times 87.5% = 4.615)</td>
</tr>
</tbody>
</table>

Total resistance of ceiling components = \(0.436 + 4.615 = 5.051 \text{m}^2\text{K}/\text{W} \).

\[
U = \frac{1}{\sum R} = \frac{1}{0.286 + 5.051} = 0.187 \text{ W/m}^2\text{K}
\]
Area weighted application — an allowance for a variation occurring in the construction of an external element.

E.g. Taking the roof U-value calculation shown on the previous page and including an uninsulated plywood loft hatch within the ceiling. The loft hatch occupies 10% of the overall ceiling area.

Ceiling/loft hatch section

Resistance (R) of hatch material = 0.025 m + 0.140 W/mK

= 0.178 m²K/W

Resistance of hatch = Rs_i + R + Ra

= 0.104 + 0.178 + 0.090

= 0.372 m²K/W

Proportional area resistance of hatch = 0.372 x 10% = 0.037 m²K/W

Resistance of ceiling = 5.051 m²K/W (see previous page)

Proportional area resistance of ceiling = 5.051 x 90% = 4.546 m²K/W

Resistance of pitched component = 0.286 m²K/W (see previous page)

\[U = \frac{1}{0.286 + 0.037 + 4.546} = \frac{1}{4.869} = 0.205 \text{ W/m}^2\text{K} \]

An area weighted higher U-value than the 0.187 W/m²K calculated on the previous page for a fully insulated ceiling.

NB. Proprietary loft hatches are manufactured to incorporate a substantial layer of insulating material.
Standard Assessment Procedure ~ the Approved Document to Part L of the Building Regulations emphasises the importance of quantifying the energy costs of running homes. For this purpose it uses the Government’s Standard Assessment Procedure (SAP). SAP has a numerical scale of 1 to 100, although it can exceed 100 if a dwelling is a net energy exporter. It takes into account the effectiveness of a building’s fabric relative to insulation and standard of construction. It also appraises the energy efficiency of fuel consuming installations such as ventilation, hot water, heating and lighting. Incidentals like solar gain also feature in the calculations.

As part of the Building Regulations approval procedure, energy rating (SAP) calculations are submitted to the local building control authority. SAP ratings are also required to provide prospective home purchasers or tenants with an indication of the expected fuel costs for hot water and heating. This information is documented and included with the property conveyance. The SAP calculation involves combining data from tables, work sheets and formulae. Guidance is found in Approved Document L, or by application of certified SAP computer software programs.

SAP rating average for all homes is about 50. A modernised 1930s house is about 70, that built to 1995 energy standards about 80 and a 2002 house about 90. Current quality construction standards should rate dwellings close to 100.

Air Permeability ~ airtightness in the construction of dwellings is an important quality control objective. Compliance is achieved by attention to detail at construction interfaces, e.g. by silicone sealing built-in joists to blockwork inner leafs and door and window frames to masonry surrounds; draft proofing sashes, doors and loft hatches. Guidance for compliance is provided in Limiting thermal bridging and air leakage: Robust construction details for dwellings and similar buildings, published by The Stationery Office. Dwellings failing to comply with these measures are penalised in SAP calculations. Alternatively, a certificate must be obtained to show pre-completion testing satisfying air permeability of less than 10 m³/h per m² envelope area at 50 Pascals (Pa or N/m²) pressure.
Dwellings in England and Wales ~ the worst acceptable, or the limiting heat energy loss through the enclosing fabric as an area weighted average U-value:

<table>
<thead>
<tr>
<th>Element of construction</th>
<th>Area weighted average U-value (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External wall</td>
<td>0.30</td>
</tr>
<tr>
<td>Roof</td>
<td>0.20</td>
</tr>
<tr>
<td>Floor</td>
<td>0.25</td>
</tr>
<tr>
<td>Party wall</td>
<td>0.20</td>
</tr>
<tr>
<td>Windows, roof windows, glazed</td>
<td>2.00 (adjusted for slope)*</td>
</tr>
<tr>
<td>rooflights and pedestrian doors</td>
<td></td>
</tr>
</tbody>
</table>

Note: Air permeability through the external envelope, not to exceed 10 m³/hour per m² at 50 Pascals (Pa) pressure.

Area weighted average U-value ~ for an element of construction this depends on the individual U-values of the components and the area they occupy within that element. Some examples with higher thermal transmittance than the adjacent construction to include the part of an external wall containing a meter cupboard and the part of a roof structure containing a loft hatch and/or a rooflight. Also, a window or door U-value is measured with the combined performance of the principal unit and its frame.

Objective U-values ~

Notwithstanding the limiting thermal transmittance values stated above, an objective target for U-values could be better than:

<table>
<thead>
<tr>
<th>Element of construction</th>
<th>Area weighted average U-value (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External wall</td>
<td>0.18</td>
</tr>
<tr>
<td>Roof</td>
<td>0.13</td>
</tr>
<tr>
<td>Floor</td>
<td>0.13</td>
</tr>
<tr>
<td>Party wall</td>
<td>0.00</td>
</tr>
<tr>
<td>Windows, roof windows, glazed</td>
<td>1.40 (adjusted for slope)*</td>
</tr>
<tr>
<td>rooflights and glazed doors</td>
<td></td>
</tr>
<tr>
<td>Doors opaque</td>
<td>1.00</td>
</tr>
<tr>
<td>Doors semi-glazed</td>
<td>1.20</td>
</tr>
</tbody>
</table>

NB. Air permeability objective not greater than 5 m³/hour per m² at 50 Pa.

* See next page.
Typical party wall U-values:

<table>
<thead>
<tr>
<th>Construction type</th>
<th>U-value (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>0.00</td>
</tr>
<tr>
<td>Cavity, unfilled without edge sealing</td>
<td>0.50</td>
</tr>
<tr>
<td>Cavity, unfilled with edge sealing</td>
<td>0.20</td>
</tr>
<tr>
<td>Cavity, filled with edge sealing</td>
<td>0.00</td>
</tr>
</tbody>
</table>

U-values for windows and rooflights – these are shown for the unit mounted in a vertical position. Where a window is inclined to the vertical, U-values should be modified relative to the angle of installation. The following table is a guide:

<table>
<thead>
<tr>
<th>Inclination to the horizontal</th>
<th>U-value (W/m²K) increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Double glazed</td>
</tr>
<tr>
<td>< 20°</td>
<td>0.50</td>
</tr>
<tr>
<td>20° – 40°</td>
<td>0.40</td>
</tr>
<tr>
<td>40° – 60°</td>
<td>0.30</td>
</tr>
<tr>
<td>60° – 70°</td>
<td>0.20</td>
</tr>
<tr>
<td>> 70°</td>
<td>0.00</td>
</tr>
</tbody>
</table>

E.g. A triple glazed rooflight with an area weighted average U-value of 1.50 W/m²K in a 45° pitched roof. Revised U-value = 1.50 + 0.20 = 1.70 W/m²K.

Total window area and other measures for glazing provision and energy rating are considered on the next page.

References and further reading:

BRE Digest 443: Conventions for U-value calculations.

Building Regulations, Approved Documents:

 L1A: Conservation of fuel and power in new dwellings.

 L1B: Conservation of fuel and power in existing dwellings.

Domestic Building Services Compliance Guide – NBS for DCLG.
Windows, doors, rooflights and roof windows:

- New dwellings ~ a maximum area is not critical to Approved Document guidance to Building Regulation compliance, except that openable parts should not exceed one quarter of the total floor area. The contribution that window and door openings make to the overall energy efficiency of a dwelling, with particular regard to their U-values is included in SAP calculations. A measure of compliance can be achieved using the BFRC window energy rating and efficiency design guide shown on page 566.

- Existing dwellings ~ extensions and alterations. Approved Document guidance to Building Regulation compliance includes a reasonable provision to limit the total area to the equivalent of 25% of an extension floor area. The BFRC window energy rating of new installations is at least band C, i.e. higher than minus 20 (see page 566) or a U-value of not greater than 1.6 W/m²K (area weighted combining glazing and frame). Doors to have an area weighted U-value of not greater than 1.8 W/m²K.

Ref. BFRC ~ British Fenestration Registration Council.

Energy source:

A gas or oil fired central heating boiler with a SEDBUK efficiency rating of 90% (band rating A) is standard installation for new dwellings. There are transitional and exceptional circumstances that may permit lower band rated boilers. Where this occurs, the construction of the building envelope should compensate with very low U-values. An energy recovery system or an alternative/renewable energy system may also be considered as a trade-off. Acceptable standards for solid fuel boilers are provided to HETAS certification (see page 565).

SEDBUK band ratings ~ these are defined in the UK Government’s publication, Standard Assessment Procedure for Energy Rating of Dwellings (SAP)

Note: SEDBUK band A = >90% efficiency

.. B = 86–90%
.. C = 82–86%
.. D = 78–82%
.. E = 74–82%
.. F = 70–74%
.. G = <70%

Ref. SEDBUK ~ Seasonal Efficiency of a Domestic Boiler in the UK.
New-build dwellings, limiting or worst acceptable and (objective target) heat energy loss values ~

![Diagram of New-build dwellings]

0.20 (0.13) unheated loft space

0.30 (0.18)

0.25 (0.13)

0.30 (0.18)

Door 2.00 (1.40)**

0.25 (0.13)

* A WER (page 566) above -30 may be an acceptable alternative subject to other SAP objectives being satisfied

** See page 560

Extensions or alterations to existing dwellings, reasonable/acceptable heat energy loss objectives ~

![Diagram of Extensions or alterations to existing dwellings]

0.16 unheated loft space

1.60 adjusted for slope, or WER above -20

0.18

1.60 or WER above -20

Door 1.80

unheated space (as above)

0.28

0.22

0.28

0.22

NB. Figures indicate the thermal transmittance coefficient through the fabric of construction. Otherwise known as the U-value, expressed in units of watts per square metre for every one degree Kelvin temperature difference (W/m²K).
There are many situations in the enclosing envelope of a building where the U-value of the principal construction is interrupted by necessary change. In these instances, U-values are averaged over the material components. Some examples include meter cupboard/cavity wall (illustrated), door/door frame, loft hatch/ceiling and rooflight/roof structure.

Formula ~

\[
\text{Area weighted average} = \frac{(U_1 \times A_1) + (U_2 \times A_2) + (U_3 \times A_3), \text{ etc.}}{A_1 + A_2 + A_3, \text{ etc.}}
\]

E.g. A 12.00m² cavity wall containing gas and electricity meter cupboards, each 0.410m wide x 0.610m high. Thermal transmittance factors 0.25 W/m²K and 0.45 W/m²K respectively.

Meter cupboard area = 0.41 m x 0.61 m x 2 = 0.50m²

Effective wall area = 12.00 m² less 0.50 m² = 11.50m²

Area weighted U-value ~

\[
\frac{(0.25 \times 11.50) + (0.45 \times 0.50)}{11.50 + 0.50} = \frac{2.875 + 0.225}{12.00} = 0.258 \text{ W/m}²\text{K}
\]

NB. See also page 558.
Further quality procedures (structure):

- Provision of insulation to be continuous. Gaps are unacceptable and if allowed to occur will invalidate the insulation value by thermal bridging.
- Junctions at elements of construction (wall/floor, wall/roof) to receive particular attention with regard to continuity of insulation.
- Openings in walls for windows and doors to be adequately treated with insulating cavity closers.

Further quality procedures (energy consumption):

- Hot water and heating systems to be fully commissioned on completion and controls set with regard for comfort, health and economical use of fuel.
- As part of the commissioning process for new wet heating system installations, they should be filled and drained (flushed out) and on refilling, the water should be blended with an anti-corrosion additive diluted to the manufacturer's instructions. This additive also functions as a pump lubricant, an anti-freeze and protection against scaling.
- A certificate confirming heating system commissioning and water treatment should be provided for the new installation user. This document to be accompanied by component manufacturer's operating and maintenance instructions.

Note: Commissioning of heating installations and the issue of certificates is by a qualified 'competent person' as recognised by the appropriate body: CAPITA GROUP, OFTEC or HETAS. CAPITA GROUP ~ 'Gas Safe Register' of installers (has replaced CORGI). OFTEC ~ Oil Firing Technical Association for the Petroleum Industry. HETAS ~ Solid Fuel Heating Equipment Testing and Approval Scheme.

Further quality procedures (existing dwellings) ~

Where an existing dwelling is subject to alterations/extensions and improvements such as refurbishment, it is expected that reasonable provision be made to enhance the thermal properties of the external envelope of the existing structure.
European Window Energy Rating Scheme (EWERS) ~ an alternative to U-values for measuring the thermal efficiency of windows. U-values form part of the assessment, in addition to factors for solar heat gain and air leakage. In the UK, testing and labelling of window manufacturers' products is promoted by the British Fenestration Rating Council (BFRC). The scheme uses a computer to simulate energy movement over a year through a standard window of 1.480 × 1.230 m containing a central mullion and opening sash to one side.

Data is expressed on a scale from A–G in units of kWh/m²/year.

- A > zero
- B -10 to 0
- C -20 to -10
- D -30 to -20
- E -50 to -30
- F -70 to -50
- G < -70

By formula, rating = \(218.6 \times g\text{ value}) - 68.5 \times (U\text{ value} \times L\text{ value})\)

where: g value = factor measuring effectiveness of solar heat block expressed between 0 and 1.

For comparison:

- 0.48 (no curtains)
- 0.43 (curtains open)
- 0.17 (curtains closed)

U-value = weighted average transmittance coefficient
L-value = air leakage factor

From the label shown opposite:

Rating = \((218.6 \times 0.5) - 68.5 \times (1.8 + 0.10)\)
= 109.3 - 130.15
= -20.85 i.e. -21

Typical format of a window energy rating label ~

ABC Joinery Ltd.
Window ref. XYZ 123

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy index</td>
<td>Climate zone</td>
<td>-21</td>
<td>UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal trans. (U-value)</td>
<td>Solar factor (g-value)</td>
<td>1.8 W/m²K</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air leakage (L-value)</td>
<td>0.10m³/h/m² at 50 Pa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Carbon Index ~ the Standard Assessment Procedure (SAP) for energy rating dwellings includes a facility to calculate annual emission of carbon dioxide (CO₂). This is measured in kilogrammes and can be related to floor area using the following established calculation method for determining a carbon factor (CF) and carbon index (CI):

\[\text{CF} = \frac{\text{CO}_2}{(\text{total floor area} + 45)} \]

\[\text{CI} = 17.7 - (9 \log \text{CF}) \]
Note: \(\log = \) logarithm to the base 10.

E.g. A dwelling of floor area 125 m² with CO₂ emissions of 2000 kg/yr.

\[\text{CF} = \frac{2000}{(125 + 45)} = 11.76 \]

\[\text{CI} = 17.7 - (9 \log 11.76) = 8.06 \]

The carbon index ranges from zero to 10. Objective values for new dwellings should be at least 9.

DER and TER ~ A.D. L refers to the Dwelling Carbon Emissions Rate (DER) as another means for assessing carbon discharge. The DER is compared by calculation to a Target Carbon Emissions Rate (TER) based on data for type of lighting, floor area, building shape and fuel category. The DER is derived by appraising the potential CO₂ emission relative to the consumption of fuel in hot water, heating, lighting, cooling (if fitted), fans and pumps.

\[\text{DER} \leq \text{TER} \text{ (units of kg/m}^2\text{ floor area/yr)} \]

Note: DER applies to dwellings. A similar Building Carbon Emissions Rate (BER) is used to assess CO₂ emissions for other building types.

TFEE ~ Target Fabric Energy Efficiency is a supplementary performance standard, introduced to A.D. L from 2014 for new buildings. The objective of TFEE is to reduce carbon emissions by 6% for dwellings and 9% for non-domestic buildings compared with 2010 requirements. Calculations incorporate factors for U-values, thermal bridging, air permeability, thermal mass, lighting and solar gains. FEE is measured in CO₂ emissions of kWh/m²/yr.

<table>
<thead>
<tr>
<th>Fuel type</th>
<th>CO₂ (kg per kWh) conversion factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>0.206</td>
</tr>
<tr>
<td>Electricity</td>
<td>0.527</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>0.215</td>
</tr>
</tbody>
</table>
Basis for improvement ~ total annual CO₂ emissions from
building are around 150 million tonnes (MtC).

CO₂ represents about 85% of all greenhouse gases produced
by burning fossil fuels (methane 6%, nitrous oxide 5%,
industrial trace gases the remainder).

25 million homes produce about 15% (74 MtC) of carbon
emissions, representing a significant target for improvement
(non-domestic buildings about 17%, 79 MtC).

The table below shows the main sources of CO₂ emissions in MtC.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential/domestic</td>
<td>79</td>
<td>81</td>
<td>87</td>
<td>84</td>
<td>87</td>
<td>74</td>
</tr>
<tr>
<td>Business/non-domestic</td>
<td>113</td>
<td>107</td>
<td>107</td>
<td>97</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td>Energy supply</td>
<td>241</td>
<td>210</td>
<td>203</td>
<td>216</td>
<td>195</td>
<td>192</td>
</tr>
<tr>
<td>Transport</td>
<td>120</td>
<td>120</td>
<td>125</td>
<td>129</td>
<td>119</td>
<td>116</td>
</tr>
<tr>
<td>Other</td>
<td>39</td>
<td>36</td>
<td>31</td>
<td>27</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>592</td>
<td>554</td>
<td>553</td>
<td>553</td>
<td>498</td>
<td>479</td>
</tr>
</tbody>
</table>

Note: CO₂ emissions have declined significantly by about 19% since
1990, corresponding to about 3% less consumption of fuel energy.
These figures are affected by higher energy efficiency of new buildings,
climate/temperature change, improved efficiency of power generation
and lower usage of carbon intensive coal. Allowing for these variables,
in real terms there has been about a 6% reduction in energy use.

* Provisional figures.
Ref. DECC National statistics.

The energy efficiency of new homes is about 70% higher than
those built in 1990. However, many older homes have been
improved to include some of the following provisions:

<table>
<thead>
<tr>
<th>Application</th>
<th>Potential reduction, CO₂ per annum (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loft insulation</td>
<td>1000</td>
</tr>
<tr>
<td>Double glazing</td>
<td>700</td>
</tr>
<tr>
<td>Draft proofing (doors, windows, floors)</td>
<td>300</td>
</tr>
<tr>
<td>Wall cavity insulation</td>
<td>750</td>
</tr>
<tr>
<td>Condensing boiler</td>
<td>875</td>
</tr>
<tr>
<td>Insulated hot water storage cylinder</td>
<td>160</td>
</tr>
<tr>
<td>Energy saving light bulb</td>
<td>45 (each)</td>
</tr>
</tbody>
</table>
Thermal Insulation — this is required within the roof of all dwellings in the UK. It is necessary to create a comfortable internal environment, to reduce the risk of condensation and to economise in fuel consumption costs.

To satisfy these objectives, insulation may be placed between and over the ceiling joists as shown below to produce a cold roof void. Alternatively, the insulation can be located above the rafters as shown on page 509. Insulation above the rafters creates a warm roof void and space within the roof structure that may be useful for habitable accommodation.

NB. All pipework in roof space should be insulated to prevent frost attack. The sides and top of cold water storage cisterns should be insulated to prevent freezing.
Application of Insulation with Typical U-values ~

Cold roof

<table>
<thead>
<tr>
<th>Insulation (mm) between/over joists</th>
<th>U-value W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 80</td>
<td>0.22</td>
</tr>
<tr>
<td>100 100</td>
<td>0.20</td>
</tr>
<tr>
<td>100 150</td>
<td>0.16</td>
</tr>
<tr>
<td>100 200</td>
<td>0.13</td>
</tr>
<tr>
<td>100 250</td>
<td>0.11</td>
</tr>
<tr>
<td>100 300</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Note: 200, 250 and 300 mm over joist insulation in two layers.

Warm roof

<table>
<thead>
<tr>
<th>Insulation (mm) underlay/overlay</th>
<th>U-value W/m²K</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 50</td>
<td>0.25</td>
</tr>
<tr>
<td>100 80</td>
<td>0.21</td>
</tr>
<tr>
<td>100 100</td>
<td>0.19</td>
</tr>
<tr>
<td>150 50</td>
<td>0.20</td>
</tr>
<tr>
<td>150 80</td>
<td>0.17</td>
</tr>
<tr>
<td>100 100</td>
<td>0.16</td>
</tr>
</tbody>
</table>

NB. Underlay insulation in between and fully filling the rafter depth. Overlay insulation board under counter battens secured to the top of rafters with helical skewers.
Various Applications with Typical Thermal Transmittance Values

Timber

<table>
<thead>
<tr>
<th>Insulation thickness (mm)</th>
<th>U-value (W/m^2K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>0.25</td>
</tr>
<tr>
<td>165</td>
<td>0.22</td>
</tr>
<tr>
<td>190</td>
<td>0.18</td>
</tr>
<tr>
<td>220</td>
<td>0.16</td>
</tr>
<tr>
<td>270</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Concrete

<table>
<thead>
<tr>
<th>Insulation thickness (mm)</th>
<th>U-value (W/m^2K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>0.25</td>
</tr>
<tr>
<td>165</td>
<td>0.22</td>
</tr>
<tr>
<td>190</td>
<td>0.18</td>
</tr>
<tr>
<td>220</td>
<td>0.16</td>
</tr>
<tr>
<td>270</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Troughed or profiled steel decking

<table>
<thead>
<tr>
<th>Insulation thickness (mm)</th>
<th>U-value (W/m^2K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>0.25</td>
</tr>
<tr>
<td>165</td>
<td>0.22</td>
</tr>
<tr>
<td>210</td>
<td>0.18</td>
</tr>
<tr>
<td>230</td>
<td>0.16</td>
</tr>
<tr>
<td>280</td>
<td>0.13</td>
</tr>
</tbody>
</table>

NB. Insulation of mineral wool roofing board, with a thermal conductivity (\(\lambda \)) of 0.038 \(W/mK \).
Thermal Insulation to Walls ~ the minimum performance standards for exposed walls set out in Approved Document L to meet the requirements of Part L of the Building Regulations can be achieved in several ways (see pages 560 and 563). The usual methods require careful specification, detail and construction of the wall fabric, insulating material(s) and/or applied finishes.

Typical examples of existing construction that would require upgrading to satisfy contemporary UK standards:

SOLID BLOCK WALL (U = 0.45 W/m²K)

- 250mm thick aerated concrete blocks - density 475 kg/m³
- 19mm thick plasterboard with vapour control layer on 20 mm thick battens

CAVITY WALL WITH CAVITY INSULATING BATTs (U = 0.39 W/m²K)

- 50mm wide cavity
- 50mm thick mineral wool/fibre cavity batts
- 102.5mm external brick outer leaf

TRADITIONAL CAVITY WALL (U = 0.58 W/m²K)

- 50mm wide cavity
- 150mm thick lightweight concrete block inner leaf - density 475 kg/m³
- 13mm thick lightweight plaster
Typical examples of contemporary construction practice that achieve a thermal transmittance or U-value below 0.30 W/m²K ~

FULL FILL CAVITY WALL. Block density 750 kg/m³ U = 0.25 W/m²K
Block density 600 kg/m³ U = 0.24 W/m²K
Block density 475 kg/m³ U = 0.23 W/m²K

FULL FILL CAVITY WALL. T = 125 mm U = 0.28 W/m²K
T = 150 mm U = 0.26 W/m²K
T = 200 mm U = 0.24 W/m²K

TIMBER FRAME PART CAVITY FILL. T = 100 mm U = 0.26 W/m²K
T = 120 mm U = 0.24 W/m²K
T = 140 mm U = 0.21 W/m²K

NB. Mineral wool insulating batts have a typical thermal conductivity (λ) value of 0.038 W/mK.
Improvements to various forms of existing construction with typical thermal transmittance U-values (W/m²K) ~

Masonry with external insulation

<table>
<thead>
<tr>
<th>Insulation</th>
<th>U-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0mm</td>
<td>2.17</td>
</tr>
<tr>
<td>80 ..</td>
<td>0.36</td>
</tr>
<tr>
<td>100 ..</td>
<td>0.30</td>
</tr>
<tr>
<td>120 ..</td>
<td>0.26</td>
</tr>
<tr>
<td>150 ..</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Masonry with internal insulation

<table>
<thead>
<tr>
<th>Insulation</th>
<th>Med. U-values</th>
<th>Ltwt. U-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>80mm</td>
<td>0.36</td>
<td>0.29</td>
</tr>
<tr>
<td>100 ..</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>120 ..</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>150 ..</td>
<td>0.21</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Insulation thickness and U-values as shown for external insulation.

NB. Expanded polystyrene board (EPS) is an alternative insulation material that will provide similar insulation values.
Cavity filling may be by:

- injected urea-formaldehyde (UF) foam, or
- blown in granulated fibres of mineral wool or perlite.

UF foam - a resin and a hardener mixed in solution. Placement into the wall cavity is from the ground upward, by compressed air injection through 12mm holes. After placement the foam hardens. An alternative material is an adhesive polyurethane (PUR) foam. This has an added benefit of bonding the two leaves of masonry, a remedial treatment where wall ties have corroded.

Granulated materials - a dry system, pressure injected from ground level upward through 20mm holes.

![Diagram of cavity fill](image)

Typical thermal transmittance U-values (W/m²K) ~

<table>
<thead>
<tr>
<th>Cavity (mm)</th>
<th>Med. dens. block $\lambda = 0.5$</th>
<th>Ltwt. dens. block $\lambda = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.54</td>
<td>0.47</td>
</tr>
<tr>
<td>75</td>
<td>0.40</td>
<td>0.36</td>
</tr>
<tr>
<td>100</td>
<td>0.32</td>
<td>0.29</td>
</tr>
<tr>
<td>125</td>
<td>0.27</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Refs.: BS 5617: Specification for urea-formaldehyde foam systems suitable for thermal insulation of cavity walls with masonry or concrete inner and outer leaves.

BS 5618: Code of practice for thermal insulation of cavity walls (with masonry or concrete inner and outer leaves) by filling with urea-formaldehyde foam systems.

Approved Document D - Toxic substances, D1: Cavity insulation.
Surface treatment may be:

- External if space and access permits, or
- Internal with some loss of room volume, and possibly disturbance to existing surface attachments, e.g. shelves, radiators, electrical sockets and light fittings.

External

<table>
<thead>
<tr>
<th>Typical U-values</th>
<th>Med.</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ins. (mm) blk. blk. λ = 0.5 λ = 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.51</td>
<td>0.48</td>
</tr>
<tr>
<td>75</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>100</td>
<td>0.30</td>
<td>0.29</td>
</tr>
</tbody>
</table>

- 6mm thin coat polymer render (see Note 1)
- mineral fibre slab insulation
- half brick and 100mm concrete block wall with 50mm cavity, rendered and plastered internally

Internal

<table>
<thead>
<tr>
<th>Typical U-values</th>
<th>Med.</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ins. (mm) blk. blk. λ = 0.5 λ = 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.44</td>
<td>0.42</td>
</tr>
<tr>
<td>75</td>
<td>0.34</td>
<td>0.33</td>
</tr>
<tr>
<td>100</td>
<td>0.28</td>
<td>0.27</td>
</tr>
</tbody>
</table>

- 10mm thin coat polymer render (see Note 1)
- mineral fibre slab insulation
- half brick and 100mm concrete block wall with 50mm cavity, rendered and plastered internally
- thermal wallboard or mineral fibre slab insulation with vapour control lined plasterboard, fixed to existing wall with multi-purpose adhesive dabs (see Note 2)

Notes:

1. A modified alternative to conventional cement and sand render with a polymer, silicone or acrylic additive. Vapour permeable with good weatherproofing qualities.

2. Vapour control layer is an impervious lining of polythene or metal foil placed to the warm side of insulation. Prevents warm moisture from the interior of a house condensing on the cold parts of construction.
RSC ~ rainscreen cladding to existing solid masonry walls.

Upgrading existing structures by overcladding has the following benefits:

* Enhanced appearance.
* Protection to the substructural wall.
* Weather exclusion.
* Improved thermal insulation.
* Improved sound insulation.
* No loss or disruption to habitable internal space.

Solid masonry one brick walls typical of many pre-1950s houses have a U-value of about 2.20 W/m²K (see page 549). Surface insulation and overcladding can considerably reduce this figure to less than 0.50 W/m²K.

![Diagram of rainscreen cladding]

*Typically expanded polystyrene (EPS), polyurethane (PUR) or glass/mineral wool.

Additional details are shown on pages 705 to 707.
RSC ~ rainscreen cladding to existing and new build cavity walls.

The benefits for solid walls listed on the preceding page apply equally to existing and new cavity wall construction.

Cavity masonry walls for housing have varied materially over a period exceeding 100 years. Some comprise a brick outer and inner leaf, others brick outer leaf and concrete block inner leaf. The composition of concrete blocks has varied considerably over time. Aggregates have included breeze, pumice and wood shavings to name just a few examples. Most brick and block cavity walls have a U-value of around 1.50 W/m²K. Overcladding and insulation can reduce this figure to less than 0.4 W/m²K.

See page 552 for insulation types and comparable conductivity values.

*See previous page
The U-value (W/m²K) varies with floor shape and size. This is represented as the ratio of perimeter (P) to area (A). Page 553 has a worked example using insulation manufacturers’ data for the P/A ratio.

Ground-bearing concrete

<table>
<thead>
<tr>
<th>P/A ratio</th>
<th>Typical insulation thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>105 140 175</td>
</tr>
<tr>
<td>0.8</td>
<td>100 135 170</td>
</tr>
<tr>
<td>0.6</td>
<td>90 130 160</td>
</tr>
<tr>
<td>0.4</td>
<td>75 110 130</td>
</tr>
<tr>
<td>0.2</td>
<td>30 60 80</td>
</tr>
<tr>
<td>U</td>
<td>0.25 0.20 0.18</td>
</tr>
</tbody>
</table>

Suspended beam and block

<table>
<thead>
<tr>
<th>P/A ratio</th>
<th>Typical insulation thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>110 145 175</td>
</tr>
<tr>
<td>0.8</td>
<td>105 140 165</td>
</tr>
<tr>
<td>0.6</td>
<td>100 130 155</td>
</tr>
<tr>
<td>0.4</td>
<td>90 120 145</td>
</tr>
<tr>
<td>0.2</td>
<td>60 95 125</td>
</tr>
<tr>
<td>U</td>
<td>0.25 0.20 0.18</td>
</tr>
</tbody>
</table>

Suspended timber

<table>
<thead>
<tr>
<th>P/A ratio</th>
<th>Typical insulation thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>140 150 180</td>
</tr>
<tr>
<td>0.8</td>
<td>140 140 180</td>
</tr>
<tr>
<td>0.6</td>
<td>120 140 180</td>
</tr>
<tr>
<td>0.4</td>
<td>120 140 150</td>
</tr>
<tr>
<td>0.2</td>
<td>75 90 120</td>
</tr>
<tr>
<td>U</td>
<td>0.25 0.22 0.20</td>
</tr>
</tbody>
</table>

Note: Figures apply to mineral wool insulation board, λ = 0.038 W/mK. Closed cell extruded polystyrene can also be used, λ = 0.029 W/mK.
Thermal or Cold Bridging ~ this is heat loss and possible condensation, occurring mainly around window and door openings and at the junction between ground floor and wall. Other opportunities for thermal bridging occur where uniform construction is interrupted by unspecified components, e.g. occasional use of bricks and/or tile slips to make good gaps in thermal block inner leaf construction.

NB. This practice was quite common, but is no longer acceptable by current legislative standards in the UK.

Prime areas for concern ~

* Cavity should extend down at least 225mm below the level of the lowest dpc (A.D. C: Section 5).
As shown on the preceding page, continuity of insulated construction in the external envelope is necessary to prevent thermal bridging. Nevertheless, some discontinuity is unavoidable where the pattern of construction has to change. For example, windows and doors have significantly higher U-values than elsewhere. Heat loss and condensation risk in these situations is regulated by limiting areas, effectively providing a trade-off against very low U-values elsewhere.

The following details should be observed around openings and at ground floor:

- **Window Sill**: Cavity insulation to underside of window board.
- **Window/Door Jamb**: Proprietary cavity closer and insulated dpc (page 414).
- **Ground Floor and Wall**: Insulation batts installed at least 150mm below top of floor insulation.
- **Window/Door Head**: Cavity insulation cut to fit; open perpends; lintel filled with insulation.
The possibility of a thermal or cold bridge occurring in a specific location can be appraised by calculation. Alternatively, the calculations can be used to determine how much insulation will be required to prevent a cold bridge. The composite lintel of concrete and steel shown below will serve as an example:

Wall components, less insulation (steel in lintel is insignificant):
- 102.5mm brickwork outer leaf: \(\lambda = 0.84 \text{ W/mK} \)
- 100mm dense concrete lintel: \(\lambda = 1.93 \text{ ..} \)
- 13mm lightweight plaster: \(\lambda = 0.16 \text{ ..} \)

Resistances of above components:
- Brickwork: \(0.1025 + 0.84 = 0.122 \text{ m}^2\text{K/W} \)
- Concrete lintel: \(0.100 + 1.93 = 0.052 .. \)
- Lightweight plaster: \(0.013 + 0.16 = 0.081 .. \)

Resistances of surfaces:
- Internal (\(R_{si} \)) = 0.123 ..
- Cavity (\(R_a \)) = 0.180 ..
- External (\(R_{so} \)) = 0.055 ..

Summary of resistances = 0.613 ..

To achieve a U-value of say 0.27 W/m²K, total resistance required = 1 + 0.27 = 3.703 m²K/W

The insulation in the cavity at the lintel position is required to have a resistance of 3.703 - 0.613 = 3.09 m²K/W.

Using a urethane insulation with a thermal conductivity (\(\lambda \)) of 0.025 W/mK, \(0.025 \times 3.09 = 0.077 \text{ m} \text{ or 77 mm minimum thickness.} \)

If the cavity closer has the same thermal conductivity, then:
Summary of resistance = 0.613 - 0.180 (\(R_a \)) = 0.433 m²K/W
Total resistance required = 3.703 m²K/W. Therefore the cavity closer is required to have a resistance of: 3.703 - 0.433 = 3.270 m²K/W
Min. cavity closer width = \(0.025 \text{ W/mK} \times 3.270 \text{ m}^2\text{K/W} = 0.082 \text{ m or 82 mm.} \)

In practice, the cavity width and the lintel insulation would exceed 82 mm.

NB. data for resistances and \(\lambda \) values taken from pages 550 to 552.
Air infiltration ~ heating costs will increase if cold air is allowed to penetrate peripheral gaps and breaks in the continuity of construction. Furthermore, heat energy will escape through structural breaks and the following are prime situations for treatment:

1. Loft hatch
2. Services penetrating the structure
3. Opening components in windows, doors and rooflights
4. Gaps between dry lining and masonry walls

NB. See page 431 for threshold detail.
With new buildings and those subject to alterations, the objective is to optimise the use of fuel and power to minimise emission of carbon dioxide and other burnt fuel gases into the atmosphere. This applies principally to the installation of hot water, heating, lighting, ventilation and air conditioning systems.

Guidance to satisfy the Building Regulations is provided in Approved Document L2, but this is not prescriptive. It sets out a series of objectives relating to achievement of a satisfactory carbon emission standard. Other technical references and approvals are cross referenced in the Approved Document and these provide a significant degree of design flexibility in achieving its objectives.

Energy efficiency assessment in terms of limiting CO₂ emissions for a proposed building is determined by applying a series of procedures modelled on the specification of a building the same size and shape as the proposal. The performance standards are given in the 2013 National Calculation Methodology (NCM) modelling guide published by the DCLG. The proposed or actual building must be seen to have the same as or less carbon emissions by calculation. Improvements can be achieved in many ways, including the following:

- Limit the area or number of rooflights, windows and other openings.
- Improve the U-values of the external envelope. The limiting or worst acceptable are shown on the following page.
- Improve the building airtightness from the poorest acceptable air permeability of 10 m³ per hour per m² of external envelope at 50 Pa.
- Improve the heating system efficiency by installing thermostatic, zone and optimum time controls. Fully insulate pipes, ducting, storage vessels and other energy consuming plant.
- Use high efficacy lighting fittings, automated controls and low voltage equipment.
- Apply heat recovery systems to ventilation and air conditioning systems.
- Install a building energy management system to monitor and regulate heating and air conditioning plant.
- Limit overheating with solar controls and purpose-made glazing.
- Provide continuity of insulation about the external envelope.
- Establish a commissioning and plant maintenance procedure, with a log book to record all repairs, replacements and inspections.

Further guidance: Non-domestic Building Services Compliance Guide. A DCLG (Dept. for Communities and Local Government) publication.
Buildings other than dwellings (England and Wales), worst acceptable or limiting heat energy loss through the enclosing fabric ~

<table>
<thead>
<tr>
<th>Element of construction</th>
<th>Area weighted average U-value (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>External wall</td>
<td>0.35</td>
</tr>
<tr>
<td>Roof</td>
<td>0.25</td>
</tr>
<tr>
<td>Floor</td>
<td>0.25</td>
</tr>
<tr>
<td>Windows, pedestrian doors, rooflights,</td>
<td></td>
</tr>
<tr>
<td>roof windows and curtain walling</td>
<td>2.20</td>
</tr>
<tr>
<td>High use entrances and roof vents</td>
<td>3.50</td>
</tr>
<tr>
<td>Large vehicle access doors</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Notes:
- For display windows and for building types that may be exempted, see Section 3 in A.D. L2A.
- U-values for inclined windows modified as shown on page 561.
- The worst acceptable thermal transmittance values allow for some design flexibility by permitting a trade-off against other fuel-saving features such as energy recovery systems.
- The U-value standard is set with regard to minimising the risk of condensation.
- Elements of construction will normally be expected to provide much better insulation than the limiting U-values. Objective or target design values could be better than:
 - External wall: 0.23 W/m²K
 - Roof: 0.15
 - Floor: 0.20
 - Windows, etc.: 1.50

Building airtightness ≤ 5m³ per hour per m² at 50 Pa pressure.

Continuity of insulation ~ conformity can be shown in the form of a report produced for the local authority building control department by an accredited surveyor. The report can contain confirmation of:
* an approved design specification and construction practice to an acceptable standard, or
* a thermographic survey showing continuity of insulation over the external envelope. This is essential where it is impractical to fully inspect the work in progress.

Airtightness ~ tested by using portable fans of a capacity to suit the building volume. Smoke capsules in conjunction with fan pressurisation provide a visual indication of air leakage paths.
Main features of Approved Document (A.D.) M: Access to and use of buildings, and other associated guidance:

* Site entrance or car parking space to building entrance to be firm and level. Building approach width 900 mm min. A gentle slope is acceptable with a gradient up to 1 in 20 and up to 1 in 40 in cross-falls. A slightly steeper ramped access or easy steps should satisfy A.D. Sections 6.14 and 6.15, and 6.16 and 6.17 respectively.
* An accessible threshold for wheelchairs is required at the principal entrance - see illustration.
* Entrance door - minimum clear opening width of 775 mm.
* Corridors, passageways and internal doors of adequate width for wheelchair circulation. Minimum 750 mm - see also table 4 in A.D. Section 7.
* Stair minimum clear width of 900 mm, with provision of handrails both sides. Other requirements as A.D. K for private stairs.
* Accessible light switches, power, telephone and aerial sockets between 450 and 1200 mm above floor level.
* WC provision in the entrance storey or first habitable storey. Door to open outward. Clear wheelchair space of at least 750 mm in front of WC and a preferred dimension of 500 mm either side of the WC as measured from its centre.
* Special provisions are required for passenger lifts and stairs in blocks of flats, to enable disabled people to access other storeys. See A.D. Section 9 for details.

BS 8300: Design of buildings and their approaches to meet the needs of disabled people. Code of practice.
Objective: Car parking should be provided for visitors, customers and employees requiring access to a building. The main entrance to a building and any other entrances used by employees should be reasonably accessible on foot or by wheelchair from any of the allocated car parking spaces. Parking for the disabled should be prioritised, specifically designated and given larger bay areas to allow people with restricted mobility to access their vehicles unimpeded.

Provisions for designated parking spaces:

- Location to be clearly signed at the car park entrance.
- Specific bays to be clearly identified.
- Surfaces to be firm, durable and slip resistant on level ground with no undulations greater than 5 mm.
- No further distance than 50 m from the main entrance to a building.
- Bay width to be sufficient to allow car doors to fully open for wheelchair space and passenger transfer.
- Dropped kerb access of at least 1.20 m width for wheelchair access.
- Parking ticket machines to be in close proximity, with controls between 0.75 m and 1.20 m above the adjacent ground.

Designated parking bays:

```
standard single bay  adjacent bays with shared access space
2.400 1.200 2.400 1.200 2.400
```

```
| 4.800 |
|       |
|       |
|       |

dropped kerb 1.200 m min. or flush edge

defined access space between designated parking
```
Main features:

* Site entrance, or car parking space to building entrance to be firm and level, i.e. maximum gradient 1 in 20 with a minimum car access zone of 1200 mm. Ramped and easy stepped approaches are also acceptable.

* Access to include tactile warnings, i.e. profiled (blistered or ribbed) pavings over a width of at least 1200 mm, for the benefit of people with impaired vision. Dropped kerbs are required to ease wheelchair use.

* Special provision for handrails is necessary for those who may have difficulty in negotiating changes in level.

* Guarding and warning to be provided where projections or obstructions occur, e.g. tactile paving could be used around window opening areas.

* Sufficient space for wheelchair manoeuvrability in entrances.

Minimum entrance width of 800 mm. Unobstructed space of at least 300 mm to the leading (opening) edge of door. Glazed panel in the door to provide visibility from 500 to 1500 mm above floor level. Entrance lobby space should be sufficient for a wheelchair user to clear one door before opening another.

* Width of door opening measured as the effective clear dimension at right angles to the wall containing a door, to include the door frame/lining and stop and any other projection.

continued......
* Main access and internal fire doors that self-close should have a maximum operating force of 20 Newtons at the leading edge. If this is not possible, a power operated door opening and closing system is required.

* Corridors and passageways, minimum unobstructed width 1200 mm. Internal lobbies as described on the previous page for external lobbies.

* Lift dimensions and capacities to suit the building size. Ref. BS EN 81 series: Safety rules for the construction and installation of lifts. Alternative vertical access may be by wheelchair stairlift, see BS EN 81-40 (special lifts and lifting platforms) and BS 6440: Powered vertical lifting platforms having non-enclosed or partially enclosed liftways intended for use by persons with impaired mobility.

* Stair minimum width 1200 mm, with step nosings brightly distinguished. Rise maximum 12 risers external, 16 risers internal between landings. Landings to have 1200 mm of clear space from any door swings. Step rise, maximum 170 mm and uniform throughout. Step going, minimum 250 mm (internal), 280 mm (external) and uniform throughout. No open risers. Handrail to each side of the stair.

* Number and location of WCs to reflect ease of access for wheelchair users. In no case should a wheelchair user have to travel more than one storey. Provision may be ‘unisex’ which is generally more suitable, or ‘integral’ with specific sex conveniences. Particular provision is outlined in Section 5 of the Approved Document.

* Section 4 of the Approved Document should be consulted for special provisions in restaurants, bars and hotel bedrooms, and for special provisions for spectator seating in theatres, stadia and conference facilities.

Disability Discrimination Act.
BS 9999: Code of practice for fire safety in the design, management and use of buildings.
BS 8300: Design of buildings and their approaches to meet the needs of disabled people. Code of practice.
6 SUPERSTRUCTURE – 2

REINFORCED CONCRETE SLABS
REINFORCED CONCRETE FRAMED STRUCTURES
STRUCTURAL CONCRETE, FIRE PROTECTION
FORMWORK
PRECAST CONCRETE FRAMES
PRESTRESSED CONCRETE
STRUCTURAL STEELWORK ASSEMBLY
STRUCTURAL STEELWORK CONNECTIONS
STRUCTURAL FIRE PROTECTION
PORTAL FRAMES
COMPOSITE TIMBER BEAMS
ROOF SHEET COVERINGS
LONG SPAN ROOFS
SHELL ROOF CONSTRUCTION
MEMBRANE ROOFS
ROOFLIGHTS
PANEL WALLS, RAINSCREEN CLADDING AND CURTAIN WALLING
CONCRETE CLADDINGS
CONCRETE SURFACE FINISHES AND DEFECTS
Simply Supported Slabs — these are slabs which rest on a bearing and for design purposes are not considered to be fixed to the support and are therefore, in theory, free to lift. In practice however they are restrained from unacceptable lifting by their own self-weight plus any loadings.

Concrete Slabs — concrete is a material which is strong in compression and weak in tension, and if the member is overloaded its tensile resistance may be exceeded leading to structural failure.

Simply Supported RC Slabs

- Simply Supported Slabs ~ these are slabs which rest on a bearing and for design purposes are not considered to be fixed to the support and are therefore, in theory, free to lift. In practice however they are restrained from unacceptable lifting by their own self-weight plus any loadings.

- Concrete Slabs ~ concrete is a material which is strong in compression and weak in tension, and if the member is overloaded its tensile resistance may be exceeded leading to structural failure.

![Diagram of a simply supported reinforced concrete slab](image)

Condition Before Loading

- Neutral axis length remains unaltered therefore no stress is induced.
- Upper fibres shorten and are therefore in a state of compression.
- Lower fibres lengthen and are therefore in a state of tension.

- If tensile resistance of the slab is exceeded cracks caused by the parting of the fibres will occur — if this is likely to arise steel reinforcement should be placed in the slab.

Deflection — maximum allowed:
- 1/240 span during construction
- 1/360 span after completion
Reinforcement ~ generally in the form of steel bars which are used to provide the tensile strength which plain concrete lacks. The number, diameter, spacing, shape and type of bars to be used have to be designed; a basic guide is shown on pages 597 and 598. Reinforcement is placed as near to the outside as practicable, with sufficient cover of concrete over the reinforcement to protect the steel bars from corrosion and to provide a degree of fire resistance. Slabs which are square in plan are considered to be spanning in two directions and therefore main reinforcing bars are used both ways, whereas slabs which are rectangular in plan are considered to span across the shortest distance and main bars are used in this direction only with smaller diameter distribution bars placed at right angles forming a mat or grid.

Typical Details ~
Construction — whatever method of construction is used the construction sequence will follow the same pattern:

1. Assemble and erect formwork.
2. Prepare and place reinforcement.
3. Pour and compact or vibrate concrete.
4. Strike and remove formwork in stages as curing proceeds.

Typical Example —
Profiled galvanised steel decking is a permanent formwork system for construction of composite floor slabs. The steel sheet has surface indentations and deformities to effect a bond with the concrete topping. The concrete will still require reinforcing with steel rods or mesh, even though the metal section will contribute considerably to the tensile strength of the finished slab.

Typical Detail –

![Diagram showing typical detail of metal section (MetSec) decking.](image)

For slab depth and span potential, see BS EN1994-1-1: Design of composite steel and concrete structures. General rules and rules for buildings.

Where structural support framing is located at the ends of a section and at intermediate points, studs are through-deck welded to provide resistance to shear –

![Diagram showing reinforcing method.](image)

There are considerable savings in concrete volume compared with standard in-situ reinforced concrete floor slabs. This reduction in concrete also reduces structural load on foundations.
Beams ~ these are horizontal load bearing members which are classified as either main beams which transmit floor and secondary beam loads to the columns or secondary beams which transmit floor loads to the main beams.

Concrete being a material which has little tensile strength needs to be reinforced to resist the induced tensile stresses which can be in the form of ordinary tension or diagonal tension (shear). The calculation of the area, diameter, type, position and number of reinforcing bars required is one of the functions of a structural engineer.

Typical RC Beam Details ~

![Diagram of RC Beam Details]

- Nominal diameter anchor bars - mk. 2
- Stirrups or binders - mk. 3
- Main bars - mk. 1
- Clear span
- Bearing
- Elevation
- Bearing
- Mk. 2 bent to form shear bar
- Binders - mk. 4
- Anchor bars - mk. 3
- Mk. 1
- Main bars - mks. 1 and 2
- Mk. 1
- Slab
- Edge beam main beam
- Section at support
- Section at mid-span
- Cantilever beam
- Column
- Main bars - mk. 1
- Binders - mk. 3
- Anchor bars - mk. 2
Mild Steel Reinforcement – located in areas where tension occurs in a beam or slab. Concrete specification is normally 25 or 30 N/mm² in this situation.

Simple beam or slab

- Distribution or cross bars at 450 mm spacing
- Effective depth
- Centre of main reinforcement

End support

100 mm slab/beam = 10 mm dia. at 112 mm spacing or pitch 125 and 150 mm slab/beam = 12 mm dia. at 112 mm spacing

Continuous beam or slab

- Grip length (see page 599)
- End support
- Interim support
- Grip length 0.175 L
- L = span

NB. Distribution or cross bars function as lateral reinforcement and supplement the unit's strength in tensile areas. They also provide resistance to cracking in the concrete as the unit contracts during setting and drying.

Pitch of main bars ≤ 3 × effective depth.

Pitch of distribution bars ≤ 5 × effective depth.
Guidance - simply supported slabs are capable of the following loading relative to their thickness:

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Self-weight (kg/m²)</th>
<th>Imposed load* (kg/m²)</th>
<th>Total load (kg/m²)</th>
<th>Total load (kN/m²)</th>
<th>Span (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>240</td>
<td>500</td>
<td>740</td>
<td>7.26</td>
<td>2.4</td>
</tr>
<tr>
<td>125</td>
<td>300</td>
<td>500</td>
<td>800</td>
<td>7.85</td>
<td>3.0</td>
</tr>
<tr>
<td>150</td>
<td>360</td>
<td>500</td>
<td>860</td>
<td>8.44</td>
<td>3.6</td>
</tr>
</tbody>
</table>

NB. As a *rule of thumb*, it is easy to remember that for general use (as above), thickness of slab equates to 1/24 span.

* Imposed loading varies with application from 1.5 kN/m² (153 kg/m²) for domestic buildings, to over 10 kN/m² (1020 kg/m²) for heavy industrial storage areas. 500 kg/m² is typical for office filing and storage space. See BS EN 1991-1-1: Actions on structures. General actions. Densities. self-weight. imposed loads for buildings.

For larger spans - thickness can be increased proportionally to the span, e.g. 6 m span will require a 250 mm thickness.

For greater loading - slab thickness is increased proportionally to the square root of the load, e.g. for a total load of 1500 kg/m² over a 3m span:

\[
\sqrt{\frac{1500}{800}} \times 125 = 171.2 \quad \text{i.e. 175 mm}
\]

Continuous beams and slabs have several supports, therefore they are stronger than simple beams and slabs. The spans given in the above table may be increased by 20% for interior spans and 10% for end spans.

Deflection limit on reinforced concrete beams and slabs is 1/250 span.

Ref.:

NB. See pages 642 and 643 for deflection formulae.
Bond Between Concrete and Steel – permissible stress for the bond between concrete and steel can be taken as one-tenth of the compressive concrete stress, plus 0.175 N/mm²*. Given the stresses in concrete and steel, it is possible to calculate sufficient grip length.

E.g. concrete working stress of 5 N/mm²
 steel working stress of 125 N/mm²
 sectional area of reinf. bar = 3.142 r² or 0.7854 d²
 tensile strength of bar = 125 × 0.7854 d²
 circumference of bar = 3.142 d
 area of bar in contact = 3.142 × d × L

Key: r = radius of steel bar
 d = diameter of steel bar
 L = Length of bar in contact

* Conc. bond stress = (0.10 × 5 N/mm²) + 0.175 = 0.675 N/mm²
 Total bond stress = 3.142 d × L × 0.675 N/mm²

Thus, developing the tensile strength of the bar:

\[125 \times 0.7854 d^2 = 3.142 d \times L \times 0.675 \]
\[98.175 d = 2.120 L \]
\[L = 46 d \]

As a guide to good practice, a margin of 14 d should be added to L. Therefore the bar bond or grip length in this example is equivalent to 60 times the bar diameter.
Columns - these are the vertical load bearing members of the structural frame which transmits the beam loads down to the foundations. They are usually constructed in storey heights and therefore the reinforcement must be lapped to provide structural continuity.
With the exception of where bars are spliced ~

BEAMS
The distance between any two parallel bars in the horizontal should be not less than the greater of:
- 25mm
- the bar diameter where they are equal
- the diameter of the larger bar if they are unequal
- 6mm greater than the largest size of aggregate in the concrete
The distance between successive layers of bars should be not less than the greater of:
- 15mm (25mm if bars > 25mm dia.)
- the maximum aggregate size
An exception is where the bars transverse each other, e.g. mesh reinforcement.

COLUMNS
Established design guides allow for reinforcement of between 0.8% and 8% of column gross cross sectional area. A lesser figure of 0.6% may be acceptable. A relatively high percentage of steel may save on concrete volume, but consideration must be given to the practicalities of placing and compacting wet concrete. If the design justifies a large proportion of steel, it may be preferable to consider using a concrete clad rolled steel I section.

Transverse reinforcement ~ otherwise known as binders or links. These have the purpose of retaining the main longitudinal reinforcement during construction and restraining each reinforcing bar against buckling. Diameter, take the greater of:
- 6mm
- 0.25 \times \text{main longitudinal reinforcement}
Spacing or pitch, not more than the lesser of:
- least lateral column dimension
- 12 \times \text{diameter of smallest longitudinal reinforcement}
- 300mm
Helical binding ~ normally, spacing or pitch as above, unless the binding has the additional function of restraining the concrete core from lateral expansion, thereby increasing its load carrying potential. This increased load must be allowed for with a pitch:
- not greater than 75mm
- not greater than 0.166 \times \text{core diameter of the column}
- not less than 25mm
- not less than 3 \times \text{diameter of the binding steel}

\text{NB. Core diameter is measured across the area of concrete enclosed within the centre line of the binding.}
Typical RC Column Details ~

Steel Reinforced Concrete - a modular ratio represents the amount of load that a square unit of steel can safely transmit relative to that of concrete. A figure of 18 is normal, with some variation depending on materials specification and quality.

e.g.

Area of concrete = 88,743 mm2

Equivalent area of steel = 18 \times 1257 mm2 = 22626 mm2

Equivalent combined area of concrete and steel:

\[
\begin{array}{c}
88743 \\
+ 22626 \\
\hline
111369 \text{ mm}^2
\end{array}
\]

Using concrete with a safe or working stress of 5 N/mm2, derived from a factor of safety of 5, i.e.

\[
\text{Factory of safety} = \frac{\text{Ultimate stress}}{\text{Working stress}} = \frac{25 \text{ N/mm}^2}{5 \text{ N/mm}^2} = 5 \text{ N/mm}^2
\]

5 N/mm$^2 \times 111369 \text{ mm}^2 = 556845 \text{ Newtons}$

kg \times 9.81 (gravity) = Newtons

Therefore: $\frac{556845}{9.81} = 56763$ kg or 56.76 tonnes permissible load

NB. This is the safe load calculation for a reinforced concrete column where the load is axial and bending is minimal or non-existent, due to a very low slenderness ratio (effective length to least lateral dimension). In reality this is unusual and the next example shows how factors for buckling can be incorporated into the calculation.
Buckling or Bending Effect — the previous example assumed total rigidity and made no allowance for column length and attachments such as floor beams.

The working stress unit for concrete may be taken as 0.8 times the maximum working stress of concrete where the effective length of column (see page 645) is less than 15 times its least lateral dimension. Where this exceeds 15, a further factor for buckling can be obtained from the following:

<table>
<thead>
<tr>
<th>Effective length + Least lateral dimension</th>
<th>Buckling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.0</td>
</tr>
<tr>
<td>18</td>
<td>0.9</td>
</tr>
<tr>
<td>21</td>
<td>0.8</td>
</tr>
<tr>
<td>24</td>
<td>0.7</td>
</tr>
<tr>
<td>27</td>
<td>0.6</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>33</td>
<td>0.4</td>
</tr>
<tr>
<td>36</td>
<td>0.3</td>
</tr>
<tr>
<td>39</td>
<td>0.2</td>
</tr>
<tr>
<td>42</td>
<td>0.1</td>
</tr>
<tr>
<td>45</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Using the example from the previous page, with a column effective length of 9 metres and a modular ratio of 18:

Effective length + Least lateral dimension = 9000 + 300 = 30

From above table the buckling factor = 0.5

Concrete working stress = 5 N/mm²

Equivalent combined area of concrete and steel = 111369 mm²

Therefore: 5 × 0.8 × 0.5 × 111369 = 222738 Newtons

\[
\frac{222738}{9.81} = 22705\text{kg or 22.7 tonnes permissible load}
\]
Bar Coding ~ a convenient method for specifying and coordinating the prefabrication of steel reinforcement in the assembly area. It is also useful on site, for checking deliveries and locating materials relative to project requirements. BS EN ISO 3766 provides guidance for a simplified coding system, such that bars can be manufactured and labelled without ambiguity for easy recognition and application on site.

A typical example is the beam shown on page 596, where the lower longitudinal reinforcement (mk-1) could be coded:

2T20-1-200B or, 12TØ20-200-B-21

2 = number of bars
T = deformed high yield steel (460 N/mm², 8–40 mm dia.)
20 or, Ø20 = diameter of bar (mm)
1 or 1 = bar mark or ref. no.
200 = spacing (mm)
B = located in bottom of member
21 = shape code

Other common notation:
R = plain round mild steel (250 N/mm², 8–16 mm dia.)
S = stainless steel
W = wire reinforcement (4–12 mm dia.)
T (at the end) = located in top of member
abr = alternate bars reversed (useful for offsets)
Thus, bar mk.2 = 2R10-2-200T or, 2RØ10-200-T-00
and mk.3 = 10R8-3-270 or, 310RØ8-270-54

All but the most obscure reinforcement shapes are illustrated in the British Standard. For the beam referred to on page 596, the standard listing is:

<table>
<thead>
<tr>
<th>BS code</th>
<th>Shape</th>
<th>Total bar length on centre line (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>A + B + C - r - 2c (d = bar diameter)</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>2(A + B) + 12d</td>
</tr>
</tbody>
</table>

Bar Schedule ~ this can be derived from the coding explained on the previous page. Assuming 10 No. beams are required:

<table>
<thead>
<tr>
<th>Member</th>
<th>Bar mark</th>
<th>Type and size</th>
<th>No. of members</th>
<th>No. of bars in each</th>
<th>Total no.</th>
<th>Bar length (mm)</th>
<th>Shape code</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>1</td>
<td>T20</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>3080</td>
<td>21</td>
<td>200</td>
<td>2700</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>R10</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>2700</td>
<td>00</td>
<td>2700</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>R8</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>1336</td>
<td>54</td>
<td>400</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: r = 2 × d for mild steel
3 × d for high yield steel

Bar coding ~

<table>
<thead>
<tr>
<th>1st character</th>
<th>2nd character</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No bends</td>
</tr>
<tr>
<td>1</td>
<td>1 bend</td>
</tr>
<tr>
<td>2</td>
<td>2 bends</td>
</tr>
<tr>
<td>3</td>
<td>3 bends</td>
</tr>
<tr>
<td>4</td>
<td>4 bends</td>
</tr>
<tr>
<td>5</td>
<td>5 bends</td>
</tr>
<tr>
<td>6</td>
<td>Arcs of circles</td>
</tr>
<tr>
<td>7</td>
<td>Complete helices</td>
</tr>
</tbody>
</table>

NB. 9 is used for special or non-standard shapes.
Material ~ Mild steel or high yield steel. Both contain about 99% iron, the remaining constituents are manganese, carbon, sulphur, and phosphorus. The proportion of carbon determines the quality and grade of steel: mild steel has 0.25% carbon, high yield steel 0.40%. High yield steel may also be produced by cold working or deforming mild steel until it is strain hardened. Mild steel has the letter R preceding the bar diameter in mm, e.g. R20, and high yield steel the letter T or Y.

Standard bar diameters ~ 6, 8, 10, 12, 16, 20, 25, 32 and 40 mm.

Grade notation:

- Mild steel - grade 250 or 250 N/mm² characteristic tensile strength (0.25% carbon, 0.06% sulphur and 0.06% phosphorus).
- High yield steel - grade 460/425 (0.40% carbon, 0.05% sulphur and 0.05% phosphorus).

460 N/mm² characteristic tensile strength: 6, 8, 10, 12 and 16 mm diameter.
425 N/mm² characteristic tensile strength: 20, 25, 32 and 40 mm diameter.

Examples of steel reinforcement ~

Steel reinforcement mesh or fabric is produced in four different formats for different applications:

<table>
<thead>
<tr>
<th>Format</th>
<th>Type</th>
<th>Typical application</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Square mesh</td>
<td>Floor slabs</td>
</tr>
<tr>
<td>B</td>
<td>Rectangular mesh</td>
<td>Floor slabs</td>
</tr>
<tr>
<td>C</td>
<td>Long mesh</td>
<td>Roads and pavements</td>
</tr>
<tr>
<td>D</td>
<td>Wrapping mesh</td>
<td>Binding wire with concrete fire protection to structural steelwork</td>
</tr>
</tbody>
</table>

Standard sheet size ~ 4.8 m long × 2.4 m wide.
Standard roll size ~ 48 and 72 m long × 2.4 m wide.

Specification ~ format letter plus a reference number. This number equates to the cross sectional area in mm² of the main bars per metre width of mesh.
E.g. B385 is rectangular mesh with 7 mm dia. main bars, i.e. 10 bars of 7 mm dia. @ 100 mm spacing = 385 mm².

BS 4482: Steel wire for the reinforcement of concrete products. Specification.
Cover to reinforcement in columns, beams, foundations, etc. is required for the following reasons:

• To protect the steel against corrosion.
• To provide sufficient bond or adhesion between steel and concrete.
• To ensure sufficient protection of the steel in a fire (see Note).

If the cover is insufficient, concrete will spall away from the steel.

Minimum cover ~ never less than the maximum size of aggregate in the concrete, or the largest reinforcement bar size (take greater value).

Guidance on minimum cover for particular locations ~

Below ground:

• Foundations, retaining walls, basements, etc., 40 mm, binders 25 mm.
• Marine structures, 65 mm, binders 50 mm.
• Uneven earth and fill 75 mm, blinding 40 mm.

Above ground:

• Ends of reinforcing bars, not less than 25 mm nor less than 2 × bar diameter.
• Column longitudinal reinforcement 40 mm, binders 20 mm.
• Columns <190 mm min. dimension with bars <12 mm dia., 25 mm.
• Beams 25 mm, binders 20 mm.
• Slabs 20 mm (15 mm where max. aggregate size is <15 mm).

Note: Minimum cover for corrosion protection and bond may not be sufficient for fire protection and severe exposure situations.

For details of fire protection see Refs.:

Building Regulations, Approved Document B: Fire safety.

For general applications, including exposure situations, see next page.
Typical examples using dense concrete of calcareous aggregates (excluding limestone) or siliceous aggregates, e.g. flints, quartzites and granites ~

Column fully exposed ~
- 35 mm min. concrete cover to reinforcement
- 300 mm min. each face, 120 minutes’ fire resistance
- 450 mm min. each face, 240 minutes’ fire resistance

Column, maximum 50% exposed ~
- Concrete cover to reinforcement
- 240-minute fire resistant compartment wall
- 200 mm min., 120 minutes’ fire resistance, 25 mm cover
- 350 mm min., 240 minutes’ fire resistance, 35 mm cover

Column, one face only exposed ~
- 240-minute fire resistant compartment wall
- 160 mm min., 120 minutes’ fire resistance
- 240 mm min., 240 minutes’ fire resistance
- 25 mm min. cover

Beam and floor slab ~
- 125 mm min. thickness reinforced concrete compartment floor, 120 minutes’ fire resistance, 35 mm cover
- 150 mm min., 120 minutes’ fire resistance, 50 mm cover
- 240 mm min., 240 minutes’ fire resistance, 70 mm cover
Formwork ~ concrete when first mixed is a fluid and therefore to form any concrete member the wet concrete must be placed in a suitable mould to retain its shape, size and position as it sets. It is possible with some forms of concrete foundations to use the sides of the excavation as the mould but in most cases when casting concrete members a mould will have to be constructed on site. These moulds are usually called formwork. It is important to appreciate that the actual formwork is the reverse shape of the concrete member which is to be cast.

Falsework ~ the temporary structure which supports the formwork.

Principles ~
Typical Simple Beam Formwork Details ~

Erecting Formwork
1. Props positioned and levelled through.
2. Soffit placed, levelled and position checked.
3. Side forms placed, their position checked before being fixed.
4. Strutting position and fixed.
5. Final check before casting.

Suitable Formwork Materials—timber, steel and special plastics.

Basic Formwork — Details
Beam Formwork – this is basically a three-sided box supported and propped in the correct position and to the desired level. The beam formwork sides have to retain the wet concrete in the required shape and be able to withstand the initial hydrostatic pressure of the wet concrete whereas the formwork soffit apart from retaining the concrete has to support the initial load of the wet concrete and finally the set concrete until it has gained sufficient strength to be self-supporting. It is essential that all joints in the formwork are constructed to prevent the escape of grout which could result in honeycombing and/or feather edging in the cast beam. The removal time for the formwork will vary with air temperature, humidity and consequent curing rate.

Typical Details –

Typical Formwork Striking Times –

Beam Sides – 9 to 12 hours
Beam Soffits – 8 to 14 days (props left under) 8 to 14 days (props left under) 8 to 14 days (props left under)
Beam Props – 15 to 21 days

Using OPC air temp 7 to 16°C
Column Formwork — this consists of a vertical mould of the desired shape and size which has to retain the wet concrete and resist the initial hydrostatic pressure caused by the wet concrete. To keep the thickness of the formwork material to a minimum horizontal clamps or yokes are used at equal centres for batch filling and at varying centres for complete filling in one pour. The head of the column formwork can be used to support the incoming beam formwork which gives good top lateral restraint but results in complex formwork. Alternatively the column can be cast to the underside of the beams and at a later stage a collar of formwork can be clamped around the cast column to complete casting and support the incoming beam formwork. Column forms are located at the bottom around a 75 to 100 mm high concrete plinth or kicker which has the dual function of location and preventing grout loss from the bottom of the column formwork.

Typical Details ~

21mm thick plywood column formwork sides

75 x 32 margin pieces forming support for incoming beam formwork

100 x 32 cleats at 600 o/c

100 x 50 soldiers or studs

noggins as required

clamps or yokes at spacings to suit anticipated pressures — for details see next page

lift out access piece to enable formwork to be cleaned out prior to casting

Typical Striking Times

9 to 12 hours using OPC — air temperature 7 to 16°C

Alternative Side Formwork Construction
Column Yokes — these are obtainable as a metal yoke or clamp or they can be purpose made from timber.

Typical Examples —

SQUARE COLUMN

- Steel wedge
- Column formwork
- Security chain or wire
- Steel blade or arm with 2 rows of 32 x 8mm slots
- Metal clamp — available in a range of sizes from 300 to 1400mm
- 100 x 32 cleats taken beyond width of panel to form rebate
- Yoke out of 100 x 75 timber
- Plate washer to both ends of bolt

CIRCULAR COLUMN

- 25mm thick shaped staves
- Timber yokes out of 200 x 100
- Shaped timber yokes joined to form half yokes
- 16mm diameter bolts
- 12mm min. gap
- Hardboard or similar lining

REBATED COLUMN

- Column formwork
- Cleat
- Block or boxing

Shaped Columns — the basic principles of rectangular or square columns are followed but purpose-made shaped yokes are sometimes required. Rebated columns can be formed with blocks or boxing thus —
Wall Forms ~ conventionally made up of plywood sheeting that may be steel, plastic or wood faced for specific concrete finishes. Stability is provided by vertical studs and horizontal walings retained in place by adjustable props. Base location is by a kicker of 50 or 75mm height of width to suit the wall thickness. Spacing of wall forms is shown on the next page.

Wall formwork principles:

![Wall Formwork Diagram]

BRE Report 495: Concrete frame buildings, modular formwork.

*See next page and page 294.
Formwork sides to concrete walls of modest height and load can be positioned with long bolts or threaded dowel bars inserted through the walings on opposing sides. To keep the wall forms apart, tube spacers are placed over the bolts between the forms. For greater load applications, variations include purpose-made high tensile steel bolts or dowels. These too are sleeved with plastic tubes and have removable spacer cones inside the forms. Surface voids from the spacers can be made good with strong mortar. Some examples are shown below with the alternative coil tie system. Further applications are shown on pages 294 to 296.

Bolt
- wall form
- waling
- spacer tube
- strut
- plate washer, nut and bolt or threaded steel dowel

Coil tie
- plastic cone
- washer
- two tie rods welded to coils (left in place)
- bolt threaded to match coils

Tie bolt
- waling plate washer
- wing nut
- 15 or 20mm standard diameter high tensile steel deformed screw threaded bar
- kicker, 50 to 75mm high x wall width
Precast Concrete Frames ~ these frames are suitable for single storey and low rise applications, the former usually in the form of portal frames which are normally studied separately. Precast concrete frames provide the skeleton for the building and can be clad externally and finished internally by all the traditional methods. The frames are usually produced as part of a manufacturer’s standard range of designs and are therefore seldom purpose made due mainly to the high cost of the moulds.

Advantages:
1. Frames are produced under factory-controlled conditions resulting in a uniform product of both quality and accuracy.
2. Repetitive casting lowers the cost of individual members.
3. Off-site production releases site space for other activities.
4. Frames can be assembled in cold weather and generally by semi-skilled labour.

Disadvantages:
1. Although a wide choice of frames is available from various manufacturers these systems lack the design flexibility of cast in-situ purpose-made frames.
2. Site planning can be limited by manufacturer’s delivery and unloading programmes and requirements.
3. Lifting plant of a type and size not normally required by traditional construction methods may be needed.

Typical Site Activities ~
Foundation Connections ~ the preferred method of connection is to set the column into a pocket cast into a reinforced concrete pad foundation and is suitable for light to medium loadings. Where heavy column loadings are encountered it may be necessary to use a steel base plate secured to the reinforced concrete pad foundation with holding down bolts.

Typical Details ~

[Diagram of foundation connections with labeled parts: main bars, binders, 25 mm clearance, flexcell, building paper or similar joint, cement: sand grout (1:2), 75 mm thick blinding, precast concrete column grouted into pocket in foundation, temporary steel wedges, floor slab, reinforced concrete foundation, packing as required, main bars both ways, steel base plate welded to column main bars, mass concrete encasing to steel base plate, steel levelling shims or wedges, holding down bolts, plate washer, main bars both ways, 75 mm thick blinding.]
Column to Column Connection ~ precast columns are usually cast in one length and can be up to four storeys in height. They are either reinforced with bar reinforcement or they are prestressed according to the loading conditions. If column to column are required they are usually made at floor levels above the beam to column connections and can range from a simple dowel connection to a complex connection involving in-situ concrete.

Typical Details ~

- Column supported on shims until grout has set - joint is then dry packed with cement mortar
- Joint packed with dry cement mortar
- Rebated edge beam
- Lower column with mortice in top end to receive dowel bar which is grouted in
- Upper column with mortice in lower end to receive dowel bar
- Grouting holes
- Dowel bar passes through beam into lower column
- 4 No. threaded studs cast into upper column
- Exposed and lapped main reinforcing bars
- Mild steel bearing plate welded to main reinforcing bars of lower column
- Exposed binders
- In-situ concrete
- Dry joint
- Lower column
- Upper column
- Levelling nuts
- In-situ concrete
- Back nut
- Lower column
Beam to Column Connections ~ as with the column to column connections (see previous page) the main objective is to provide structural continuity at the junction. This is usually achieved by one of two basic methods:

1. Projecting bearing haunches cast onto the columns with a projecting dowel or stud bolt to provide both location and fixing.
2. Steel to steel fixings which are usually in the form of a corbel or bracket projecting from the column providing a bolted connection to a steel plate cast into the end of the beam.

Typical Details ~
Principles ~ the well known properties of concrete are that it has high compressive strength and low tensile strength. The basic concept of reinforced concrete is to include a designed amount of steel bars in a predetermined pattern to give the concrete a reasonable amount of tensile strength. In prestressed concrete a precompression is induced into the member to make full use of its own inherent compressive strength when loaded. The design aim is to achieve a balance of tensile and compressive forces so that the end result is a concrete member which is resisting only stresses which are compressive. In practice a small amount of tension may be present but providing this does not exceed the tensile strength of the concrete being used tensile failure will not occur.

Comparison of Reinforced and Prestressed Concrete ~

Prestressed Concrete

621
Materials ~ concrete will shrink whilst curing and it can also suffer sectional losses due to creep when subjected to pressure. The amount of shrinkage and creep likely to occur can be controlled by designing the strength and workability of the concrete, high strength and low workability giving the greatest reduction in both shrinkage and creep. Mild steel will suffer from relaxation losses which is where the stresses in steel under load decrease to a minimum value after a period of time and this can be overcome by increasing the initial stress in the steel. If mild steel is used for prestressing the summation of shrinkage, creep and relaxation losses will cancel out any induced compression. therefore special alloy steels must be used to form tendons for prestressed work.

Tendons ~ these can be of small diameter wires (2 to 7 mm) in a plain round, crimped or indented format; these wires may be individual or grouped to form cables. Another form of tendon is strand which consists of a straight core wire around which is helically wound further wires to give formats such as 7 wire (6 over 1) and 19 wire (9 over 9 over 1) and like wire tendons strand can be used individually or in groups to form cables. The two main advantages of strand are:

1. A large prestressing force can be provided over a restricted area.
2. Strand can be supplied in long flexible lengths capable of being stored on drums, thus saving site storage and site fabrication space.

Typical Tendon Formats ~

![Diagram of tendon formats](image-url)
Pre-tensioning – this method is used mainly in the factory production of precast concrete components such as lintels, floor units and small beams. Many of these units are formed by the long line method where precision steel moulds up to 120,000 long are used with spacer or dividing plates to form the various lengths required. In pre-tensioning the wires are stressed within the mould before the concrete is placed around them. Steam curing is often used to accelerate this process to achieve a 24-hour characteristic strength of 28 N/mm² with a typical 28-day cube strength of 40 N/mm². Stressing of the wires is carried out by using hydraulic jacks operating from one or both ends of the mould to achieve an initial 10% overstress to counteract expected looses. After curing the wires are released or cut and the bond between the stressed wires and the concrete prevents the tendons from regaining their original length, thus maintaining the precompression or prestress.

At the extreme ends of the members the bond between the stressed wires and concrete is not fully developed due to low frictional resistance. This results in a small contraction and swelling at the ends of the wire forming in effect a cone shape anchorage. The distance over which this contraction occurs is called the transfer length and is equal to 80 to 120 times the wire diameter. To achieve a greater total surface contact area it is common practice to use a larger number of small diameter wires rather than a smaller number of large diameter wires giving the same total cross sectional area.

Typical Pre-tensioning Arrangement –

![Diagram of pre-tensioning arrangement]
Post-tensioning – this method is usually employed where stressing is to be carried out on site after casting an in-situ component or where a series of precast concrete units are to be joined together to form the required member. It can also be used where curved tendons are to be used to overcome negative bending moments. In post-tensioning the concrete is cast around ducts or sheathing in which the tendons are to be housed. Stressing is carried out after the concrete has cured by means of hydraulic jacks operating from one or both ends of the member. The anchorages (see next page) which form part of the complete component prevent the stressed tendon from regaining its original length, thus maintaining the precompression or prestress. After stressing the annular space in the tendon ducts should be filled with grout to prevent corrosion of the tendons due to any entrapped moisture and to assist in stress distribution. Due to the high local stresses at the anchorage positions it is usual for a reinforcing spiral to be included in the design.
Typical Post-tensioning Arrangement ~

Anchorages ~ the formats for anchorages used in conjunction with post-tensioned prestressed concrete works depends mainly on whether the tendons are to be stressed individually or as a group, but most systems use a form of split cone wedges or jaws acting against a form of bearing or pressure plate.

Typical Anchorage Details ~

[FREYSSINET ANCHORAGE]

ribbed steel duct or sheath

forge steel anchorage block

split cone wedge or jaws

[7 No. holes for strands and jaws]

[7 No. holes for strands and jaws]

malleable cast iron anchorage and bearing plate cast into end of member

fixing bolt holes

socket for steel duct or sheath

groat hole

[FEMALE CONE]

reinforced concrete female cone cast into end of concrete member

tensile steel spiral to hole

tensile steel spiral to hole

[120 mm long x 120 diameter female cone]

30 mm long spigot for duct connection

male cone driven into female cone

e external flutes in concrete male cone to receive wires of parallel lay cable

groat hole

TYPICAL MONOSTRAND ANCHORAGE
Comparison with Reinforced Concrete — when comparing prestressed concrete with conventional reinforced concrete the main advantages and disadvantages can be enumerated but in the final analysis each structure and/or component must be decided on its own merit.

Main advantages:

2. Makes full use of the special alloy steels used to form the prestressing tendons.
3. Eliminates tension cracks, thus reducing the risk of corrosion of steel components.
4. Reduces shear stresses.
5. For any given span and loading condition a component with a smaller cross section can be used, thus giving a reduction in weight.
6. Individual precast concrete units can be joined together to form a composite member.

Main Disadvantages:

1. High degree of control over materials, design and quality of workmanship is required.
2. Special alloy steels are dearer than most traditional steels used in reinforced concrete.
3. Extra cost of special equipment required to carry out the prestressing activities.
4. Cost of extra safety requirements needed whilst stressing tendons.

As a general comparison between the two structural options under consideration it is usually found that:

1. Up to 6,000 span traditional reinforced concrete is the most economic method.
2. Spans between 6,000 and 9,000 the two cost options are comparable.
3. Over 9,000 span prestressed concrete is more economical than reinforced concrete.

It should be noted that generally columns and walls do not need prestressing but in tall columns and high retaining walls where the bending stresses are high, prestressing techniques can sometimes be economically applied.
Ground Anchors ~ these are a particular application of post-tensioning prestressing techniques and can be used to form ground tie backs to cofferdams, retaining walls and basement walls. They can also be used as vertical tie downs to basement and similar slabs to prevent flotation during and after construction. Ground anchors can be of a solid bar format (rock anchors) or of a wire or cable format for granular and cohesive soils. A lined or unlined borehole must be drilled into the soil to the design depth and at the required angle to house the ground anchor. In clay soils the borehole needs to be underreamed over the anchorage length to provide adequate bond. The tail end of the anchor is pressure grouted to form a bond with the surrounding soil. The remaining length being unbonded so that it can be stressed and anchored at head, thus inducing the prestress. The void around the unbonded or elastic length is gravity grouted after completion of the stressing operation.

Typical Ground Anchor Details ~

GROUND ANCHOR FOR GRANULAR SOILS

GROUND ANCHOR FOR COHESIVE SOILS
Cold rolled steel sections are a lightweight alternative to the relatively heavy, hot rolled steel sections that have been traditionally used in sub-framing situations, e.g. purlins, joists and sheeting rails. Cold rolled sections are generally only a few millimetres in wall thickness, saving on material and handling costs and building dead load. They are also produced in a wide variety of section profiles, some of which are shown below.

Typical section profiles ~

Equal angle
Unequal angle
Plain channel
Lipped inward channel
Lipped outward channel
Tee
Square or rectangular
Zed
Sigma

Dimensions vary considerably and many non-standard profiles are made for particular situations. A range of standard sections are produced to:

BS EN 10162: Cold rolled steel sections. Technical delivery conditions. Dimensional and cross sectional tolerances.
Structural Steelwork - standard section references:

BS 4-1: Structural steel sections. Specification for hot rolled sections.

BS EN 10056: Specification for structural steel equal and unequal angles.

BS EN 10210: Hot finished structural hollow sections of non-alloy and fine grain steels.

Typical Standard Steelwork Sections ~

UNIVERSAL BEAMS
127 x 76 x 13 kg/m to 914 x 419 x 388 kg/m

UNIVERSAL COLUMNS
152 x 152 x 23 kg/m to 356 x 406 x 634 kg/m

JOISTS C CHANNELS
76 x 76 x 13 kg/m to 254 x 203 x 82 kg/m
100 x 50 x 10 kg/m to 430 x 100 x 64 kg/m

HOLLOW SECTIONS
50 x 30 x 2.89 kg/m to 500 x 300 x 191 kg/m
25 x 25 x 1.2 kg/m to 200 x 200 x 71.1 kg/m
40 x 25 x 1.91 kg/m to 200 x 150 x 47.1 kg/m
21.3 dia. x 1.43 kg/m to 508 dia. x 194 kg/m

NB. Sizes given are serial or nominal, for actual sizes see relevant BS.
Compound Sections - these are produced by welding together standard sections. Various profiles are possible, which can be designed specifically for extreme situations such as very high loads and long spans, where standard sections alone would be insufficient. Some popular combinations of standard sections include:

BEAM or COLUMN
- Standard joist, beam or column section
- Single
- Double
- Triple

CHANNEL
- Standard channel
- Back to back
- Back to back with flange plates
- Toe to toe

GANTRY GIRDER
- Combination of standard channel, joist and plate sections welded together
Open Web Beams - these are particularly suited to long spans with light to moderate loading. The relative increase in depth will help resist deflection and voids in the web will reduce structural dead load.

Perforated Beam - a standard beam section with circular voids cut about the neutral axis.

Castellated Beam - a standard beam section web is profile cut into two by oxy-acetylene torch. The projections on each section are welded together to create a new beam 50% deeper than the original.

Litzka Beam - a standard beam cut as the castellated beam, but with overall depth increased further by using spacer plates welded to the projections. Minimal increase in weight.

NB. Voids at the end of open web beams should be filled with a welded steel plate, as this is the area of maximum shear stress in a beam.
Lattices — these are an alternative type of open web beam, using standard steel sections to fabricate high depth to weight ratio units capable of spans up to about 15m. The range of possible components is extensive and some examples are shown below:

- **PLATE GIRDER**
 - Standard 'T' section
 - Steel plate welded to standard angles
 - Steel bar laced web
 - Angles

- **TUBULAR LATTICE**
 - End bearing plate
 - Top and bottom tubular booms
 - Tubular bracing

- **DOWELLED LATTICE**
 - Steel channels
 - Timber insert for deck and ceiling fixing
 - Steel dowel lacing

NB. Span potential for lattice beams is approximately $24 \times D$.
Structural Steelwork Connections ~ these are either workshop or site connections according to where the fabrication takes place. Most site connections are bolted whereas workshop connections are very often carried out by welding. The design of structural steelwork members and their connections is the province of the structural engineer who selects the type and number of bolts or the size and length of weld to be used according to the connection strength to be achieved.

Typical Connection Examples ~

Simple Connection

- 3mm wide expansion gap
- Universal beams
- Seating cleats
- Universal column

Semi-Rigid Connection

- Universal column
- Top cleats
- Site connections
- Workshop connection
- Erection cleat
- Web cleats if required

Rigid Connection

- 150mm thick minimum concrete encasing
- Universal column
- Erection cleat
- Ground level
- Workshop fillet welds
- Holding down bolts grouted after final levelling
- Steel levelling wedges or shims
- Steel base plate bolted and grouted to RC foundation
- Removable bolt box of foamed plastic, plywood, PVC tube, etc.
- 100 x 100 plate washers

Column to Foundation Connection
Typical Connection Examples ~

'T' or similar section welded to beam as furring unless beam laid to fall

3mm clearance unless beam is continuous

universal beam site connected to cap plate

cap plate workshop fillet welded to column

universal column

TOP BEAM BEARING CONNECTIONS

upper column

web cleats to both sides workshop welded to cap plate

solid or laminated steel packing

site connections

fish plates workshop welded to lower column

lower column of equal size

COLUMN TO COLUMN CONNECTIONS

depth of notch sufficient to clear flange thickness + root radius

notch length = distance from web face to flange edge + 10 mm to nearest 5 mm

secondary beam

3mm clearance site connections

main beam

BEAM TO BEAM CONNECTION

secondary beam

web cleats to both sides welded to secondary beam in workshop

NB. All holes for bolted connections must be made from backmarking the outer surface of the section(s) involved. For actual positions see structural steelwork manuals.
Types ~
Slab or bloom base.
Gusset base.
Steel grillage (see page 263).

The type selected will depend on the load carried by the column and the distribution area of the base plate. The cross sectional area of a UC concentrates the load into a relatively small part of the base plate. Therefore to resist bending and shear, the base must be designed to resist the column loads and transfer them onto the pad foundation below.

SLAB or BLOOM BASE

SLAB BASE WITH ANGLE CLEATS

GUSSET BASE

BOLT BOX

Bolt Box - a template used to accurately locate column holding down bolts into wet concrete. EPS or plastic tubes provide space around the bolts when the concrete has set. The bolts can then be moved slightly to aid alignment with the column base.
Welding is used to prefabricate the sub-assembly of steel frame components in the workshop, prior to delivery to site where the convenience of bolted joints will be preferred.

Oxygen and acetylene (oxy-acetylene) gas welding equipment may be used to fuse together light steel sections, but otherwise it is limited to cutting profiles of the type shown on page 631. The electric arc process is preferred as it is more effective and efficient. This technique applies an expendable steel electrode to fuse parts together by high amperage current. The current potential and electrode size can be easily changed to suit the thickness of metal.

Overlapping of sections permits the convenience of fillet welds, but if the overlap is obstructive or continuity and direct transfer of loads is necessary, a butt weld will be specified. To ensure adequate weld penetration with a butt weld, the edges of the parent metal should be ground to produce an edge chamfer. For very large sections, both sides of the material should be chamfered to allow for double welds.

BUTT WELD

![Butt Weld Diagram](image)

NB. For greater thicknesses of parent metal, both sides are chamfered in preparation for a double weld.

FILLET WELD

![Fillet Weld Diagram](image)

Bolts are the preferred method for site assembly of framed building components, although rivets have been popular in the past and will be found when working on existing buildings. Cold driven and ‘pop’ rivets may be used for factory assembly of light steel frames such as stud walling, but the traditional process of hot riveting structural steel both in the workshop and on site has largely been superseded for safety reasons and the convenience of other practices.

Types of Bolt:

1. Black Bolts ~ the least expensive and least precise type of bolt, produced by forging with only the bolt and nut threads machined. Clearance between the bolt shank and bolt hole is about 2 mm, a tolerance that provides for ease of assembly. However, this imprecision limits the application of these bolts to direct bearing of components onto support brackets or seating cleats.

2. Bright Bolts ~ also known as turned and fitted bolts. These are machined under the bolt head and along the shank to produce a close fit of 0.5 mm hole clearance. They are specified where accuracy is paramount.

3. High Strength Friction Grip Bolts ~ also known as torque bolts as they are tightened to a predetermined shank tension by a torque-controlled wrench. This procedure produces a clamping force that transfers the connection by friction between components and not by shear or bearing on the bolts. These bolts are manufactured from high-yield steel. The number of bolts used to make a connection is less than otherwise required.

Refs.:
BS 4395 (2 parts): Specification for high strength friction grip bolts and associated nuts and washers for structural engineering.
BS EN 14399 (9 parts): High strength structural bolting assemblies for preloading.
Fire Resistance of Structural Steelwork — although steel is a non-combustible material with negligible surface spread of flame properties it does not behave very well under fire conditions. During the initial stages of a fire the steel will actually gain in strength but this reduces to normal at a steel temperature range of 250 to 400°C and continues to decrease until the steel temperature reaches 550°C when it has lost most of its strength. Since the temperature rise during a fire is rapid, most structural steelwork will need protection to give it a specific degree of fire resistance in terms of time. Part B of the Building Regulations sets out the minimum requirements related to building usage and size. BRE Report 128 ‘Guidelines for the construction of fire resisting structural elements’ gives acceptable methods.

Typical Examples for 120 minutes’ Fire Resistance ~

SOLID PROTECTION

- Steel column with section factor 90–140
- Non-load bearing concrete not leaner than a 1:2:4 mix with natural aggregates
- 25 mm minimum cover of concrete over steel
- 2.3 mm wire binding at 150 mm pitch

HOLLOW PROTECTION

- Steel column with section factor 90–140
- 1.6 mm wire binding at 100 mm pitch
- 25 mm firecheck plasterboard
- 15 mm firecheck plasterboard

SOLID PROTECTION

- Compartment floor slab
- Minimum cover of concrete over steel 25 mm

HOLLOW PROTECTION

- Steel beam with section factor 90–140
- Non-load-bearing concrete not leaner than a 1:2:4 mix with natural aggs.
- 2.3 mm wire binding at 150 mm pitch
- Metal lathing
- 20 mm thick perlite-gypsum plaster

NB. For section factor calculations see next page.
Section Factors – these are criteria found in tabulated fire protection data such as the Loss Prevention Certification Board’s Standards. These factors can be used to establish the minimum thickness or cover of protective material for structural sections. This interpretation is usually preferred by buildings insurance companies, as it often provides a standard in excess of the Building Regulations. Section factors are categorised: <90, 90–140 and >140. They can be calculated by the following formula:

Section Factor = Hp/A (m⁻¹)
Hp = Perimeter of section exposed to fire (m)
A = Cross sectional area of steel (m²) [see BS 4-1 or Structural Steel Tables]

Examples:

UB serial size, 305 x 127 x 42 kg/m

![Diagram of UB section]

- Section area of UB = 53.2 cm²
- Fully enclosed in concrete. 4 sides exposed
- Web thickness = 8 mm
- 306.6 mm
- 124.3 mm

\[Hp = (2 \times 124.3) + (2 \times 306.6) + 2(124.3 - 8) = 1.0944 \text{ m} \]
\[A = 53.2 \text{ cm}² \text{ or } 0.00532 \text{ m}² \]
\[\text{Section Factor, } Hp/A = 1.0944/0.00532 = 205 \]

As beam above, but three sides only exposed

- Compartment concrete floor, f.r. = 120 minutes
- Fire protection

\[Hp = 124.3 + (2 \times 306.6) + 2(124.3 - 8) = 0.9701 \text{ m} \]
\[A = 53.2 \text{ cm}² \text{ or } 0.00532 \text{ m}² \]
\[\text{Section Factor, } Hp/A = 0.9701/0.00532 = 182 \]
Simple beam design (Bending)

Formula:

\[Z = \frac{M}{f} \]

where:
- \(Z \) = section or elastic modulus (BS 4-1)
- \(M \) = moment of resistance > or = max. bending moment
- \(f \) = fibre stress of the material (normally 165 N/mm\(^2\) for rolled steel sections)

In simple situations the bending moment can be calculated:

(a) Point loads

\[BM = \frac{WL}{4} \]

(b) Distributed loads

\[BM = \frac{WL^2}{8} \text{ or } \frac{WL}{8} \]

where \(W = w \times L \)

From structural design tables, e.g. BS 4-1, a Universal Beam 305 × 127 × 48 kg/m with section modulus (\(Z \)) of 6124 cm\(^3\) about the x-x axis, can be seen to satisfy the calculated 606 cm\(^3\).

NB. Total load in kN can be established by summating the weight of materials – see pages 38 to 39: The total weight of materials multiplied by gravity; i.e. kg × 9.81 = Newtons.

This must be added to any imposed loading:

People and furniture = 1.5 kN/m\(^2\)
Snow on roofs < 30° pitch = 1.5 kN/m\(^2\)
Snow on roofs > 30° pitch = 0.75 kN/m\(^2\)
Simple beam design (shear)
From the previous example, the section profile is:

![Diagram of beam with dimensions and calculations]

Maximum shear force normally occurs at the support points, i.e. near the end of the beam. Calculation is made of the average stress value on the web sectional area.

Using the example of 200 kN load distributed over the beam, the maximum shear force at each end support will be 100 kN.

Therefore, the average shear stress = \(\frac{\text{shear force}}{\text{web sectional area}} \)

\[
= \frac{100 \times 10^3}{2762.56} = 36.20 \text{ N/mm}^2
\]

Grade S275 steel has an allowable shear stress in the web of 110 N/mm². Therefore the example section of serial size: 305 mm x 127 mm x 48 kg/m with only 36.20 N/mm² calculated average shear stress is more than capable of resisting the applied forces.

Grade S275 steel has a characteristic yield stress of 275 N/mm² in sections up to 40 mm thickness. This grade is adequate for most applications, but the more expensive grade S355 steel is available for higher stress situations.

Ref. BS EN 10025: Hot rolled products of structural steels.
Simple beam design (deflection)

The deflection due to loading, other than the weight of the structure, should not exceed 1/360 of the span.

The formula to determine the extent of deflection varies, depending on:

(a) Point loading

\[
\text{Deflection} = \frac{WL^3}{48EI}
\]

(b) Uniformly distributed loading

\[
\text{Deflection} = \frac{5WL^3}{384EI}
\]

where:
- \(W \) = load in kN
- \(L \) = span in cm
- \(E \) = Young's modulus of elasticity (typically 21,000 kN/cm\(^2\) for steel)
- \(I \) = 2nd moment of area about the x-x axis (see BS 4-1)

Using the example of 200 kN uniformly distributed over a 4 m span:

\[
\text{Deflection} = \frac{5WL^3}{384EI} = \frac{5 \times 200 \times 4^3 \times 100^3}{384 \times 21000 \times 9504} = 0.835\text{cm}
\]

Permissible deflection is 1/360 of 4 m = 11.1 mm or 1.11 cm.

Therefore actual deflection of 8.35 mm or 0.835 cm is acceptable.

Ref. BS EN 1993-1: Design of steel structures.
<table>
<thead>
<tr>
<th>Beam type</th>
<th>Load type</th>
<th>Maximum shear</th>
<th>Maximum BM</th>
<th>Maximum deflection</th>
<th>Arrangement over span L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simply supported</td>
<td>Central point load W</td>
<td>$\frac{W}{2}$</td>
<td>$\frac{WL}{4}$</td>
<td>$\frac{WL^3}{48EI}$</td>
<td></td>
</tr>
<tr>
<td>Simply supported</td>
<td>UDL W</td>
<td>$\frac{W}{2}$</td>
<td>$\frac{WL}{8}$</td>
<td>$\frac{5WL^3}{384EI}$</td>
<td></td>
</tr>
<tr>
<td>Ends fixed</td>
<td>Central point load W</td>
<td>$\frac{W}{2}$</td>
<td>$\frac{WL}{8}$ * $\frac{-WL}{8}$</td>
<td>$\frac{WL^3}{192EI}$</td>
<td></td>
</tr>
<tr>
<td>Ends fixed</td>
<td>UDL W</td>
<td>$\frac{W}{2}$</td>
<td>$\frac{-WL}{12}$ * $\frac{WL}{24}$</td>
<td>$\frac{WL^3}{384EI}$</td>
<td></td>
</tr>
<tr>
<td>Cantilever</td>
<td>Point load W at end</td>
<td>W</td>
<td>$-WL$</td>
<td>$\frac{WL^3}{3EI}$</td>
<td></td>
</tr>
<tr>
<td>Cantilever</td>
<td>UDL W</td>
<td>W</td>
<td>$\frac{-WL}{2}$</td>
<td>$\frac{WL^3}{8EI}$</td>
<td></td>
</tr>
</tbody>
</table>

* At supports \quad • At mid-span

Note: Where a beam of constant properties, i.e. size, section modulus and 2nd moment of area is used with the same type of end support to carry the same load:

- the bending moment will increase linearly with span, e.g. a doubling of the span doubles the bending moment.
- the deflection will increase by the span (L) cubed, e.g. doubling the span increases the deflection by eight times $(2)^3$.
Simple column design

Steel columns or stanchions have a tendency to buckle or bend under extreme loading. This can be attributed to:

(a) length
(b) cross sectional area
(c) method of end fixing, and
(d) the shape of section.

(b) and (d) are incorporated into a geometric property of section, known as the radius of gyration (r). It can be calculated:

\[r = \sqrt{\frac{I}{A}} \]

where: \(I \) = 2nd moment of area
\(A \) = cross-sectional area

Note: r, I and A are all listed in steel design tables, e.g. BS 4-1.

The length of a column will affect its slenderness ratio and potential to buckle. This length is calculated as an effective length relative to the method of fixing each end. Examples of position and direction fixing are shown on the next page, e.g. A Universal Column 203 mm × 203 mm × 46 kg/m, 10 m long, position and direction fixed both ends. Determine the maximum axial loading.

Effective length (l) = 0.7 × 10 m = 7 m

\(r \) from BS 4-1 = 51.1 mm

Slenderness ratio = \(\frac{l}{r} = \frac{7 \times 10^3}{51.1} = 137 \)

From structural steel design tables the maximum allowable stress for grade S275 steel with slenderness ratio of 137 is 48 N/mm²

Cross sectional area of stanchion (UC) = 5880 mm² (BS 4-1)

The total axial load = \(\frac{48 \times 5880}{10^3} = 283 \text{ kN (approx. 28 tonnes)} \)
The tendency for a column to buckle depends on its slenderness as determined by the ratio of its effective length to the radius of gyration about the weaker axis.

Effective lengths of columns and struts in compression ~

<table>
<thead>
<tr>
<th>End conditions</th>
<th>Effective length relative to actual length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrained both ends in position and direction</td>
<td>0.70</td>
</tr>
<tr>
<td>Restrained both ends in position with one end in direction</td>
<td>0.85</td>
</tr>
<tr>
<td>Restrained both ends in position but not in direction</td>
<td>1.00</td>
</tr>
<tr>
<td>Restrained one end in position and direction. The other end restrained in direction only</td>
<td>1.50</td>
</tr>
<tr>
<td>Restrained one end in position and direction. The other end unrestrained</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Position and direction fixed is location at specific points by beams or other means of retention. Position fixed only means hinged or pinned.

The effective lengths shown apply to the simplest of structures, for example, single storey buildings. Where variations occur such as cross braced support to columns, corrective factors should be applied to the effective length calculations. Guidance is available in BS EN 1993-1: Design of steel structures.
Portal Frames ~ these can be defined as two-dimensional rigid frames which have the basic characteristic of a rigid joint between the column and the beam. The main objective of this form of design is to reduce the bending moment in the beam thus allowing the frame to act as one structural unit. The transfer of stresses from the beam to the column can result in a rotational movement at the foundation which can be overcome by the introduction of a pin or hinge joint. The pin or hinge will allow free rotation to take place at the point of fixity whilst transmitting both load and shear from one member to another. In practice a true ‘pivot’ is not always required but there must be enough movement to ensure that the rigidity at the point of connection is low enough to overcome the tendency of rotational movement.

Typical Single Storey Portal Frame Formats ~

FIXED or RIGID PORTAL FRAME:
all joints or connections are rigid giving lower bending moments than other formats. Used for small to medium span frames where moments at foundations are not excessive.

TWO-PIN PORTAL FRAME:
pin joints or hinges used at foundation connections to eliminate tendency of base to rotate. Used where high base moments and weak ground are encountered.

THREE-PIN PORTAL FRAME:
pin joints or hinges used at foundation connections and at centre of beam which reduces bending moment in beam but increases deflection. Used as an alternative to a two-pin frame.
Typical Precast Concrete Portal Frame Details ~

300 x 200 spanning member or beam
- rigid joint
- 300 x 200 supporting member or column
 - floor level
 - reinforced concrete pad foundation 9,000

TYPICAL SINGLE SPAN PORTAL FRAME (frame spacing 4,500 to 6,000 mm)
300 x 200 beam
- valley gutter seating
- rigid joints
- 300 x 200 column 9,000
 - floor level
 - RC pad foundation

TYPICAL MULTI-SPAN PORTAL FRAME (frame spacing 4,500 to 6,000 mm)
25
1:2 cm/s grout
- column wedge and grouted into pocket formed in foundation

TYPICAL FOUNDATION DETAILS

beam
- recess for purlin
- nut access hole
- 20 mm dia. fixing bolts through dry splice joint

2 x depth of beam

dry splice joint
- 20 mm dia. fixing bolts
 - TYPICAL SPlice JOINT (joint made at point of contraflexure)
- reinforced concrete pad foundation to design
Portal Frames

Typical Precast Concrete Portal Frame Hinge Details ~

- Dowel bars forming pin
- Joint filled with flexible rubber, bitumen compound, cork or similar material
- 3 No. leaves
- Steel hinge plate welded to ends of main bars and cast onto spanning member
- Steel pin
- Pitched spanning member or beam

Typical Apex or Crown Hinge Details

- Main bars
- Binders
- Cranked bars forming pin
- Foundation

Typical Foundation Connection Hinge Details

- Supporting member or column
- Joint filled with flexible rubber, bitumen compound, cork or similar material
- Holding down bolts
- Base plate
- Steel pin
Typical Steel Portal Frame Details:

- Site bolted ridge plates
- UB section spanning member or beam
- Haunch or knee gusset
- Gusset plate out of UB section
- UB or UC section supporting member
- Floor level
- Reinforced concrete pad foundation

TYPICAL SINGLE SPAN PORTAL FRAME
(frame spacing 4.500 to 6.000%)

TYPICAL BEAM TO COLUMN JOINT

- Haunch or knee gusset
- Gusset plate out of UB section
- UB section spanning member or beam
- Site bolted ridge plates welded to ends of beam
- UB or UC section supporting member
- RC pad foundation

TYPICAL MULTI-SPAN PORTAL FRAME
(frame spacing 4.500 to 6.000%)

- Butt jointed beams
- Holding down bolts
- Base plate
- Web cleats if required
- Site bolted top and bottom fish plates

TYPICAL SPLICE JOINT
(joint made at point of contraflexure)

NB. Pin joints can be formed using hinge plates as shown for PCC frames on previous page.
Plywood Faced Lattice ~ framework of planed standard softwood sections with a plywood facing to both sides. A lightweight structure with high span to weight ratio. Spans to about 9m are possible with modest size timber members, providing economical construction for halls, community centres, etc. Based on the principle of a box beam comprising flanges or chords to resist bending, web stiffeners to control buckling and plywood facing to resist shear and bending as well as enhancing appearance.
Laminated Timber ~ sometimes called ‘Gluelam’ and is the process of building up beams, ribs, arches, portal frames and other structural units by gluing together layers of timber boards so that the direction of the grain of each board runs parallel with the longitudinal axis of the member being fabricated.

Laminates ~ these are the layers of board and may be jointed in width and length.

Joints ~

Width ~ joints in consecutive layers should lap twice the board thickness or one-quarter of its width whichever is the greater.

Length ~ scarf and finger joints can be used. Scarf joints should have a minimum slope of 1 in 12 but this can be steeper (say 1 in 6) in the compression edge of a beam:

Moisture Content ~ timber should have a moisture content equal to that which the member will reach in service and this is known as its equilibrium moisture content; for most buildings this will be between 11 and 15%. Generally at the time of gluing timber should not exceed 15 ± 3% in moisture content.
Laminated Timber

Vertical Laminations ~ not often used for structural laminated timber members and is unsatisfactory for curved members.

Horizontal Laminations ~ most popular method for all types of laminated timber members. The stress diagrams below show that laminates near the upper edge are subject to a compressive stress whilst those near the lower edge to a tensile stress and those near the neutral axis are subject to shear stress.

Flat sawn timber shrinks twice as much as quarter sawn timber; therefore flat and quarter sawn timbers should not be mixed in the same member since the different shrinkage rates will cause unacceptable stresses to occur on the glue lines.

Planing ~ before gluing, laminates should be planed so that the depth of the planer cutter marks are not greater than 0.025mm.
Gluing ~ this should be carried out within 48 hours of the planing operation to reduce the risk of the planed surfaces becoming contaminated or case hardened (for suitable adhesives see next page). Just before gluing up the laminates they should be checked for 'cupping'. The amount of cupping allowed depends upon the thickness and width of the laminates and has a range of 0.75 mm to 1.5 mm.

Laminate Thickness ~ no laminate should be more than 50 mm thick since seasoning up to this thickness can be carried out economically and there is less chance of any individual laminate having excessive cross-grain strength.

Straight Members ~ laminate thickness is determined by the depth of the member, there must be enough layers to allow the end joints (i.e. scarf or finger joints — see page 651) to be properly staggered.

Curved Members ~ laminate thickness is determined by the radius to which the laminate is to be bent and the species together with the quality of the timber being used. Generally the maximum laminate thickness should be 1/150 of the sharpest curve radius although with some softwoods 1/100 may be used.

Typical Laminated Timber Curved Member ~

- laminates feather edged or run out on outside
- laminated timber half portal frame
- apex butt jointed and bolted
- rafter
- knee
- radius to suit laminate thickness
- leg
- foot housed in purpose-made steel shoe and bolted to reinforced concrete foundation
Adhesives ~ although timber laminates are carefully machined, the minimum of cupping permitted and efficient cramping methods employed mean it is not always possible to obtain really tight joints between the laminates. One of the important properties of the adhesive is therefore that it should be gap filling. The maximum permissible gap is 1.25 mm.

There are four adhesives suitable for laminated timber work which have the necessary gap filling property and they are:

1. Casein † the protein in milk, extracted by coagulation and precipitation. It is a cold setting adhesive in the form of a powder which is mixed with water, it has a tendency to stain timber and is only suitable for members used in dry conditions of service.

2. Urea Formaldehyde † this is a cold setting resin glue formulated to MR/GF (moisture resistant/gap filling). Although moisture resistant it is not suitable for prolonged exposure in wet conditions and there is a tendency for the glue to lose its strength in temperatures above 40°C such as when exposed to direct sunlight. The use of this adhesive is usually confined to members used in dry, unexposed conditions of service. This adhesive will set under temperatures down to 10°C.

3. Resorcinol Formaldehyde † this is a cold setting glue formulated to WBP/GF (weather and boilproof/gap filling). It is suitable for members used in external situations but is relatively expensive. This adhesive will set under temperatures down to 15°C and does not lose its strength at high temperatures.

4. Phenol Formaldehyde † this is a similar glue to resorcinol formaldehyde but is a warm setting adhesive requiring a temperature of above 86°C in order to set. Phenol/resorcinol formaldehyde is an alternative, having similar properties to but less expensive than resorcinol formaldehyde. PRF needs a setting temperature of at least 23°C.

Preservative Treatment † this can be employed if required, provided that the pressure impregnated preservative used is selected with regard to the adhesive being employed. See also page 545.

Ref. BS EN 301: Adhesives, phenolic and aminoplastics, for load-bearing timber structures. Classification and performance requirements.
Composite Beams - stock sizes of structural softwood have sectional limitations of about 225 mm and corresponding span potential in the region of 6 m. At this distance, even modest loadings could interpose with the maximum recommended deflection of \(0.003 \times \text{span}\).

Fabricated softwood box, lattice and plywood beams are an economic consideration for medium spans. They are produced with adequate depth to resist deflection and with sufficient strength for spans into double figures. The high strength to weight ratio and simple construction provides advantages in many situations otherwise associated with steel or reinforced concrete, e.g. frames, trusses, beams and purlins in gymnasiums, workshops, garages, churches, shops, etc. They are also appropriate as purlins in loft conversion.
Parallel Strand Beam (PSB)

PSB — otherwise known as a parallam beam. Fabricated from long strands of softwood timber bonded with a phenol-formaldehyde adhesive along the length of the beam to produce a structural section of greater strength than natural timber of equivalent section. Used for beams, lintels, structural framing and trimmer sections around floor openings in spans up to 20 m. Can also be used vertically as columns.

Standard sizes ~ range from 200×45 mm up to 406×178 mm.

Typical grade stresses [N/mm^2] (compare with sw timber, page 142) ~

- Bending parallel to grain: 16.8
- Tension parallel to grain: 14.8
- Compression parallel to grain: 15.1
- Compression perpendicular to grain: 3.6
- Shear parallel to grain: 2.2
- Modulus of elasticity (mean): 12750
- Average density: 740 kg/m3

Variation ~ for spans in excess of 20 m or for high loads, a flitch beam as shown on the previous page can be made by bolting a steel plate (typically 10 or 12 mm) between two PSBs.

Ref. BBA Agrément Certificate No. 92/2813.
Composite Joist — a type of lattice frame, constructed from a pair of parallel and opposing stress graded softwood timber flanges, separated and jointed with a web of V-shaped galvanised steel plate connectors. Manufacture is off site in a factory quality-controlled situation. Here, joists can be made in standard or specific lengths to order. Depending on loading, spans to about 8 m are possible at joist spacing up to 600 mm.

Advantages over solid timber joists:

- Large span to depth ratio.
- High strength to weight ratio.
- Alternative applications, including roof members, purlins, etc.
- Generous space for services without holing or notching.
- Minimal movement and shrinkage.
- Wide flanges provide large bearing area for decking and ceiling board.
Otherwise known as tall, high rise or multi-storey buildings. Designed as an economic necessity where urban spread is prevented due to planning development constraints, e.g. green belt restrictions and as a response to high density living requirements in towns and cities. Tall buildings are also constructed to present an image of corporate status.

Building Types ~ residential apartments, hotels and office blocks.

Material Considerations ~ until the late 19th century when steel became commercially available, buildings of several storeys were constructed of brick masonry. By modern standards for height, with the exception of a modest rise to about four or five storeys, load-bearing masonry is uneconomic due to the necessary width of the lower walls to carry the superstructural loads. Therefore, framed structures of steel reinforced concrete or steel hot rolled sections are used, whereby the wall is infilling only, being relieved of any load bearing function except that of its own weight. The choice between reinforced concrete or steel for the framing is an economic decision dependent on the availability and cost of materials and appropriately qualified and experienced work force.

Design Constraints ~ the relationship between the superstructure, its foundations and the bearing capacity of the subsoil is the most important consideration. In particular, loading from vertical or gravitational forces in addition to exposure to horizontal or lateral wind forces and possibly ground movement from earthquakes.

Other Significant Design Factors ~

- Internal movement/circulation of occupants. Up to 20% of the floor area may be required to provide for vertical access in the form of stairs, lifts and escalators.
- Up to 15% of the volume of a building may be required to accommodate the services, i.e. plumbing, sanitation, drainage, ventilation, air conditioning, electrical cabling, etc. This is usually contained within suspended ceilings and raised floors.
- Occupancy type, building function and purpose will influence internal layout and structural floor load.
- External accessibility, often constrained in city and town centres. Movement must be factored in as this will affect the construction programme and subsequent efficient function of a building.
Traditional Rigid Frame ~ the structure is designed with rigidly connected welded and bolted joints between columns and beams. These joints sustain bending and provide resistance to lateral/horizontal forces. Columns are positioned quite closely and internal columns may impose to some extent on the design of the interior layout.

Core Structures ~ these are designed with a rigid structural core extending the full height of the building. The core is located centrally and the void within it is used to contain lifts and stairs. Lateral wind forces are transferred from the external wall cladding through the floor structure and into the core.
Hull or Tube Core ~ a variation of the central core structure shown on the preceding page, whereby the perimeter wall and its structural bracing contain all the floor area. The outer framing, bracing and cladding is known as the hull and it functions structurally with the internal core through the intermediary floors. The result is a rigid form of construction with a design potential for very tall buildings.

Shear Wall ~ lateral loading is resisted by rigid reinforced concrete external and internal walls. Floors act as diaphragms that transmit the lateral wind loads from façade cladding to shear walls. Long rectangular plan shaped buildings are suited to this design.

Diagonal Braced ~ a steel variation of the concrete shear wall. Structural walls are substituted with steel bracing which is in effect a series of vertical steel trusses. Columns are designed solely as compression members.
Suspended, Propped and Cantilevered ~ variations on a design theme that reduce the ground space occupied by the structural components. This facilitates unimpeded and sheltered pedestrian and vehicular access.

Suspended ~ uses a central services structural core to resist lateral forces and to transmit vertical loads to the foundations. Floors are supported on beams secured to peripheral columns that hang from a roof level truss.

Propped ~ a first floor cantilevered reinforced concrete slab or a steel structure that forms a base for peripheral columns. These columns carry the floor beams and structural floor slabs.

Cantilevered ~ each floor slab is cantilevered from a structural inner core.

Peripheral columns are not required and external cladding can be lightweight infill panelling. The infilling must have sufficient structural resistance to lateral wind loads.
Push-up ~ a steel frame construction method where the roof structure is assembled on the ground, then elevated by hydraulic jacking one floor at a time until the design height is achieved. At each floor lift, temporary supports are inserted whilst the space in between receives columns securely bolted to the preformed floor structure. The main advantage is a considerable reduction in the amount of heavy lifting plant and equipment needed by comparison with other construction methods. Also, with a roof covering applied, work at ground and upper floor levels can continue in all but extreme weather conditions.

Construction method ~

Roof construction at ground level

Roof structure elevated and temporarily supported

Ground floor constructed

Hydraulic jacks located strategically

Floors completed

Procedure repeated

Roof structure elevated above ground floor and temporarily supported

First floor constructed

First floor

Ground floor
Steel Roof Trusses — these are triangulated plane frames which carry purlins to which the roof coverings can be fixed. Steel is stronger than timber and will not spread fire over its surface and for these reasons it is often preferred to timber for medium and long span roofs. The rafters are restrained from spreading by being connected securely at their feet by a tie member. Struts and ties are provided within the basic triangle to give adequate bracing. Angle sections are usually employed for steel truss members since they are economic and accept both tensile and compressive stresses. The members of a steel roof truss are connected together with bolts or by welding to shaped plates called gussets. Steel trusses are usually placed at 3.000 to 4.500 centres which gives an economic purlin size.

Typical Steel Roof Truss Formats —

![Steel Roof Truss Diagrams]

Steel Roof Trusses up to 12 m Span
Steel Roof Trusses up to 12m Span

Typical Steel Roof Truss Details ~

100 x 75 x 10.6 kg/m angle purlin site bolted to purlin cleats

100 x 75 x 10.6 kg/m angle rafter

150 x 75 x 17 kg/m angle purlin cleat

50 x 50 x 5.82 kg/m angle strut

50 x 50 x 5.82 kg/m angle strut

8mm thick ms gusset plate

truss symmetrical about centre line

8mm thick ms gusset plate

65 x 50 x 6.75 kg/m angle tie

shop bolted connections

NB, all centre lines converge on common points

65 x 51 x 6.75 fixing cleats to both sides of gusset plate

supporting steel column

65 x 51 x 6.75 kg/m ms angle tie
Sheet Coverings — the basic functions of sheet coverings used in conjunction with steel roof trusses are to:

1. Provide resistance to penetration by the elements.
2. Provide restraint to wind and snow loads.
3. Provide a degree of thermal insulation of not less than that set out in Part L of the Building Regulations.
4. Provide resistance to surface spread of flame as set out in Part B of the Building Regulations.
5. Provide any natural daylight required through the roof in accordance with the maximum permitted areas set out in Part L of the Building Regulations.
6. Be of low self-weight to give overall design economy.
7. Be durable to keep maintenance needs to a minimum.

Suitable Materials —

Hot-dip galvanised corrugated steel sheets — BS 3083.

Aluminium profiled sheets — BS 4868.

Asbestos-free profiled sheets — various manufacturers whose products are usually based on a mixture of Portland cement, mineral fibres and density modifiers — BS EN 494.

Typical Profiles —

![Diagram of sheet coverings](image)
Roof Sheet Coverings

Typical Purlin Fixing Details ~

STEEL ANGLE PURLIN
- Roof sheeting
- Insulation
- 8 mm diameter hook bolt
- Lining sheet
- Purlin

TIMBER PURLIN
- Roof sheeting
- Insulation
- Drive screw
- Lining sheet
- Purlin

ZED BEAM PURLIN
- Roof sheeting
- Plastic cap to bolt
- Insulation
- 8 mm diameter Z-type hook bolt
- Lining sheet
- Purlin

STEEL CHANNEL PURLIN
- Roof sheeting
- Insulation
- 8 mm diameter square bend hook bolt
- Lining sheet
- Purlin

Typical Fittings ~

CLOSE FITTING RIDGE PIECE

BARGE BOARD

EAVES FILLER PIECE

EAVES CLOSURE PIECE
Double Skin, Energy Roof Systems — apply to industrial and commercial use buildings. In addition to new projects constructed to current thermal insulation standards, these systems can be specified to upgrade existing sheet profiled roofs with superimposed supplementary insulation and protective decking. Thermal performance with resin bonded mineral wool fibre of up to 250 mm overall depth may provide U-values as low as 0.13 W/m²K.

Typical Details ~

![Diagram of Double Skin, Energy Roof Systems]

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>U-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>0.26</td>
</tr>
<tr>
<td>150</td>
<td>0.22</td>
</tr>
<tr>
<td>200</td>
<td>0.17</td>
</tr>
<tr>
<td>250</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Alternative ~

![Diagram of Alternative Double Skin, Energy Roof Systems]

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>U-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.40</td>
</tr>
<tr>
<td>100</td>
<td>0.30</td>
</tr>
<tr>
<td>120</td>
<td>0.26</td>
</tr>
<tr>
<td>140</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Further typical details using profiled galvanised steel or aluminium, colour coated if required ~

RIDGE
- Cranked one-piece profiled ridge
- Outer profiled sheeting
- Ridge lining
- Zed purlin

VALLEY GUTTER
- Compressible profiled filler
- Mineral fibre quilt insulation
- Gutter lining
- Thermal break 'plastic' spacer
- Inner lining and gutter support

EAVES GUTTER
- Galvanised steel or aluminium flashing
- Radiused eaves piece
- Zed purlin
- Insulated trough gutter
- Zed rail

Inner profiled sheeting, overlaps butyl or silicone sealed to provide vapour control layer ~ optional polythene vcl and breather membrane as shown on previous page,
Long Span Roofs

Long Span Roofs ~ these can be defined as those exceeding 12,000 in span. They can be fabricated in steel, aluminium alloy, timber, reinforced concrete and prestressed concrete. Long span roofs can be used for buildings such as factories, and large public halls and gymnasiums which require a large floor area free of roof support columns. The primary roof functions of providing weather protection, thermal insulation, sound insulation and restricting spread of fire over the roof surface are common to all roof types but these roofs may also have to provide strength sufficient to carry services lifting equipment and provide for natural daylight to the interior by means of rooflights.

Basic Roof Forms ~

Pitched Trusses - spaced at suitable centres to carry purlins to which the roof coverings are fixed. Good rainwater run off - reasonable daylight spread from rooflights – high roof volume due to the triangulated format - on long spans roof volume can be reduced by using a series of short span trusses.

Flat Top Girders - spaced at suitable centres to carry purlins to which the roof coverings are fixed. Low pitch to give acceptable rainwater run off - reasonable daylight spread from rooflights - can be designed for very long spans but depth and hence roof volume increases with span.

Northlight - spaced at suitable centres to carry purlins to which roof sheeting is fixed. Good rainwater run off - if correctly orientated solar glare is eliminated - long spans can be covered by a series of short span frames.

Monitor - girders or cranked beams at centres to suit low pitch decking used. Good even daylight spread from monitor lights which is not affected by orientation of building.
Pitched Trusses – these can be constructed with a symmetrical outline (as shown on pages 663 and 664) or with an asymmetrical outline (Northlight – see detail below). They are usually made from standard steel sections with shop welded or bolted connections. Alternatively they can be fabricated using timber members joined together with bolts and timber connectors or formed as a precast concrete portal frame.

Typical Multi-span Northlight Roof Details –

NORTHLIGHT RIDGE DETAIL
- roofing bolt
- shelf angle
- bolted to steel
- batten strip
- 1.75 mm (Code 4)
- lead flashing dressed over glazing bars and onto glass
- patent glazing
- two-piece close fitting
- northlight ridge piece
- hook bolt fixing
- corrugated fibre cement roof sheeting
- insulation
- lining tray
- steel roof truss
- purlin
- cleat

NORTHLIGHT VALLEY DETAIL
- roof covering
- eaves closure piece
- patent glazing
- 1.75 mm (Code 4)
- lead flashing
- 50 x 6 mm mild steel gutter straps at 750 mm
- steel roof truss
- valley beam
- web cleats
- valley beam
Monitor Roofs - these are basically a flat roof with raised glazed portions called monitors which forms a roof having a uniform distribution of daylight with no solar glare problems irrespective of orientation and a roof with easy access for maintenance. These roofs can be constructed with light long span girders supporting the monitor frames, cranked welded beams following the profile of the roof or they can be of a precast concrete portal frame format.

Typical Monitor Roof Details ~

1.75mm (Code 4) lead flashing
patent glazing

roof decking and coverings
as for monitor light roof

12mm thick layer of stone chippings on
3 layers of built-up roofing felt
thermal insulation board
vcl
metal decking
closure piece
1.75mm (Code 4)
lead flashing
patent glazing
welded steel monitor
frame fixed to top
chords of girder

top chord of girder out of
2 No. mild steel angles
metal closure piece

perimeter support columns
at 4.500 %
lattice girders spanning
15.000 at 4.500 %
struts and ties out
of tee section bar
Flat Top Girders – attributed to Thomas Pratt an American engineer who with his father Caleb, patented their original truss design in 1844. Suitable for roof spans up to about 45 m. Effectively low pitched lattice beams used to carry purlins which support the roof coverings. One of the main advantages of this form of roof is the reduction in roof volume. The usual materials employed in the fabrication of flat top girders are timber and steel.

Typical Flat Top (Pratt Type) Girder Details –

2 No. 250 x 75 top chords 75 mm apart

225 x 75 purlins

steel fixing

shoe equal equal equal

200 x 75 'vertical' members

200 x 75 web members

2 No. 250 x 75 bottom chords 75 mm apart

Span - 20,000; Spacing - 3,000 mm
Pitch - 5°; Material - SS graded softwood
Vierendeel Girder ~ developed during the 1890s by Belgian civil engineer, Arthur Vierendeel (1852-1940). A type of rigid jointed structural frame without diagonal members. Traditionally made up from steel plates, whilst contemporary versions use standard steel profiles such as square sections welded at abutments. The large rectangular openings can feature glazing: an appropriate infilling for long span elevated footways.

Unlike pin-jointed trusses with diagonal members, structural integrity relies on fixed or rigid joints to accommodate shear forces.
Bowstring Truss ~ a type of lattice truss formed with a curved upper edge. Bows and strings may be formed in pairs of laminated timber sections that are separated by solid web timber sections of struts and ties.

Spacing ~ 4.000 to 6.000 m apart depending on sizes of timber sections used and span.

Purlins ~ to coincide with web section meeting points and at about 1.000 m interim intervals.

Decking ~ sheet material suitably weathered or profiled metal sheeting. Thermally insulated relative to application.

Top bow radius ~ generally taken as between three-quarters of the span and the whole span.

Application ~ manufacturing assembly areas, factories, aircraft hangers, exhibition centres, sports arenas and other situations requiring a very large open span with featured timbers. Standard steel sections may also be used in this profile where appearance is less important, e.g. railway termini.

Variation ~ the Belfast truss that pre-dates the standard bowstring shown. It has much smaller interlaced struts and ties and is therefore more complicated in terms of assembly and for calculation of stress distribution. See next page.
Belfast Truss — established as one of the earliest forms of bowstring truss for achieving an efficient and economical roof construction over large spans. It was first used in the latter part of the 19th century and early part of the 20th century for industrial and agricultural buildings in response to the need for space uninterrupted by walls and columns within production, assembly and storage areas. A contribution to the name was a truss design devised by Messrs D. Anderson and Son Ltd of Belfast, for supporting their patent roofing felt.

Centre line radius = \[\frac{(0.5 \times \text{span})^2 + (\text{rise})^2}{2 \times \text{rise}}\]

E.g. A 16 m span with a rise of 0.125 × span.
Therefore, rise of truss = 0.125 × 16 = 2 m.
Centre line radius = \[\frac{(0.5 \times 16)^2 + (2)^2}{2 \times 2}\]
= 68/4 = 17 m.
Bowed Lattice Truss Details ~

Bowstring ~

- steel or softwood fish plate (x2)
- laminated bow (x2)
- packing between bows
- center tie
- strut
- bolt and split ring connection
- laminated tie (x2)

Belfast ~

- purlin
- sheet decking
- lattice bracing
- strings (2)
- plywood gusset
- packing
- steel angle

Typical softwood timber dimensions ~

<table>
<thead>
<tr>
<th>Span (m)</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bow × 2 (mm)</td>
<td>38 × 20</td>
<td>63 × 25</td>
<td>75 × 32</td>
<td>75 × 50</td>
</tr>
<tr>
<td>String × 2 (mm)</td>
<td>125 × 20</td>
<td>200 × 25</td>
<td>250 × 32</td>
<td>300 × 50</td>
</tr>
<tr>
<td>Lattices (mm)</td>
<td>75 × 20</td>
<td>75 × 25</td>
<td>100 × 25</td>
<td>125 × 25</td>
</tr>
</tbody>
</table>
Connections ~ nails, screws and bolts have their limitations when used to join structural timber members. The low efficiency of joints made with a rigid bar such as a bolt is caused by the usual low shear strength of timber parallel to the grain and the non-uniform distribution of bearing stress along the shank of the bolt ~

Timber Connectors ~ these are designed to overcome the problems of structural timber connections outlined above by increasing the effective bearing area of the bolts.

Toothed Plate Connector ~ provides an efficient joint without special tools or equipment ~ suitable for all connections especially small sections ~ bolt holes are drilled 2 mm larger than the bolt diameter, the timbers forming the joint being held together whilst being drilled.

Split Ring Connector ~ very efficient and develops a high joint strength ~ suitable for all connections ~ split ring connectors are inserted into a precut groove formed with a special tool making the connector independent from the bolt.

Shear Plate Connector ~ counterpart of a split ring connector ~ housed flush into timber ~ used for temporary joints.
Space Deck ~ a roofing system based on a combination of repetitive inverted pyramidal units to give large clear spans of up to 22m for single span designs and up to 33m for two-way spans. Each unit consists of a square frame of steel angles connected with steel tubular bracing to a cast steel apex boss. The connecting boss has four threaded holes to receive horizontal high tensile steel tie bars. Threads are left and right handed at opposing ends of the tie bar to match corresponding threads in the boss. As the bar is rotated both ends tighten into a boss. Tie bars can be varied in length to alter the spacing of apex boss connectors. This will induce tension in the upper frame forming a camber for surface water drainage.

Assembly ~ usually transported to site as individual units for assembly into beams and complete space deck at ground level before crane hoisting into position onto the perimeter supports. A lightweight insulated structural roof deck system is appropriate in combination with rooflights mounted directly onto individual units if required.

Standard Unit Dimensions ~

1.2 m × 1.2 m on plan with depths of 750 mm or 1.2 m.
1.5 m × 1.5 m on plan with depths of 1.2 m or 1.5 m.
Space Deck Frame Support ~ can be on columns or a peripheral ring beam through purpose made bearing joints. These joints should be designed with adequate strength to resist and transmit vertical and horizontal loads that combine compressive and tensile forces.

Edge Treatment and Finishes ~ various possibilities; these include vertical fascias, mansard and cantilever.

Space Deck Edge Fixings and Finishes ~

[Diagram of Space Deck Edge Fixings and Finishes]

FLAT FASCIA FINISH

MANSARD FINISH

COLUMNS HEAD BRACKET

EDGE BRACKET
Space Frame ~ a concept based on a three-dimensional framework of structural members pinned at their ends, i.e. four joints or nodes that combine to produce a simple tetrahedron. As a roofing system it uses a series of connectors to join chords and bracing members. Single or double layer grids are possible, the former usually employed for assembling small domes or curved roofs. Space frames are similar in concept to space decks but they have greater flexibility in design and layout possibilities. Steel or aluminium alloy tubes have been the favoured material for space frames. Fibre reinforced composites are also viable.

Origins ~ initially attributed to Alexander Bell (1847-1922), perhaps better known as the inventor of the telephone. During the early 1900s he experimented with octahedral and tetrahedral space truss structures. It was much later before the potential for space grid structures was recognised and produced commercially. One of the earliest being the German MERO system developed by Max Mengeringhausen (1903-1988) in the 1940s. Its name was devised from an abbreviation of MEngeringhausen ROhrbauweise. In the 1960s and 1970s space frame technology moved into a new generation of super-systems capable of very long spans often exceeding 50 m. It is from the basis of the technological principles established during this era that contemporary applications are now designed.
Examples of Space Frames ~

Development ~ during the 1960s and 1970s investment in public and private company research led to numerous systems of long span space frames being developed and introduced on a commercial scale. One of the better known is the ‘Nodus’ system created by British Steel Corporation (later Corus, now TATA). This concept formed the basis for later improvements and many contemporary systems use the principles of nodal jointing compatible with standard manufactured tubular metal sections. See next page for details.

Notes:

• All factory fabrication, leaving simple assembly processes for site.
• Node steel castings in two parts with machined grooves and drilled holes. Machined steel teeth connector welded to chord ends.
Space Frame Concept Based on the ‘Nodus’ System of Jointing ~

edge chord

standard joint bolted to column adaptor

column adaptor

60mm tubular top chord

top chord

48 mm tubular bracing

standard joint

60 mm tubular bottom chord

standard joint

bottom chords

column adaptor

standard column support

grid depth to span ratio 1:20 for edge support and 1:15 for corner support

standard joint bolted to column adaptor

standard column support

hexagonal bolt head recess

top casting with 45° lugs

gasket clamped between castings

connector welded to chord

lower casting

chords

lugs

nut

washer

split pin

forked connector welded to brace

brace

brace

clevis pin

braces

forked connector welded to brace

forked connector

chord

chord

top and bottom castings

chord

sealing gasket

central high strength friction grip bolt

Long Span Roofs - Space Grid Structures
Shell Roofs ~ these can be defined as a structural curved skin covering a given plan shape and area where the forces in the shell or membrane are compressive and in the restraining edge beams are tensile. The usual materials employed in shell roof construction are in-situ reinforced concrete and timber. Concrete shell roofs are constructed over formwork which in itself is very often a shell roof making this format expensive, since the principle of use and reuse of formwork cannot normally be applied. The main factors of shell roofs are:

1. The entire roof is primarily a structural element.
2. Basic strength of any particular shell is inherent in its geometrical shape and form.
3. comparatively less material is required for shell roofs than for other forms of roof construction.

Domes ~ these are double curvature shells which can be rotationally formed by any curved geometrical plane figure rotating about a central vertical axis. Translation domes are formed by a curved line moving over another curved line whereas pendentive domes are formed by inscribing within the base circle a regular polygon and vertical planes through the true hemispherical dome.

Typical Examples ~
Barrel Vaults ~ these are single curvature shells which are essentially a cut cylinder which must be restrained at both ends to overcome the tendency to flatten. A barrel vault acts as a beam whose span is equal to the length of the roof. Long span barrel vaults are those whose span is longer than its width or chord length and conversely short barrel vaults are those whose span is shorter than its width or chord length. In every long span barrel vault thermal expansion joints will be required at 30,000 centres which will create a series of abutting barrel vault roofs weather sealed together (see next page).

Typical Single Barrel Vault Principles~
NB. Ribs not connected to support columns will set up extra stresses within the shell roof; therefore extra reinforcement will be required at the stiffening rib or beam positions.
Other Forms of Barrel Vault — by cutting intersecting and placing at different levels the basic barrel vault roof can be formed into a groin or northlight barrel vault roof:

![Diagram of intersecting barrel vaults](image)

INTERSECTING BARREL VAULTS STEPPED BARREL VAULTS

Conoids — these are double curvative shell roofs which can be considered as an alternative to barrel vaults. Spans up to 12,000 with chord lengths up to 24,000 are possible. Typical chord to span ratio 2:1.
Hyperbolic Paraboloids ~ the true hyperbolic paraboloid shell roof shape is generated by moving a vertical parabola (the generator) over another vertical parabola (the directrix) set at right angles to the moving parabola. This forms a saddle shape where horizontal sections taken through the roof are hyperbolic in format and vertical sections are parabolic. The resultant shape is not very suitable for roofing purposes: therefore only part of the saddle shape is used and this is formed by joining the centre points thus:

To obtain a more practical shape than the true saddle a straight line limited hyperbolic paraboloid is used. This is formed by raising or lowering one or more corners of a square forming a warped parallelogram thus:

NB. For further examples see next page.
Typical Straight Line Limited Hyperbolic Paraboloid Formats ~

corner C raised to E

resultant hyperbolic paraboloid

original square

corner A lowered to E and corner C raised to F so that AE ≠ CF

corner A lowered to E and corner C raised to F so that AE ≠ CF

corners A & C raised to E & G corners B & D lowered to F & H so that AE = CG & BF = DH

Combination of Hyperbolic Paraboloid Shell Roofs ~

one corner raised

two opposite corners raised

NB. Any combination possible.
Concrete Hyperbolic Paraboloid Shell Roofs ~ these can be constructed in reinforced concrete (characteristic strength 25 or 30 N/mm²) with a minimum shell thickness of 50 mm with diagonal spans up to 35,000. These shells are cast over a timber form in the shape of the required hyperbolic paraboloid format. In practice therefore two roofs are constructed and it is one of the reasons for the popularity of timber versions of this form of shell roof.

Timber Hyperbolic Paraboloid Shell Roofs ~ these are usually constructed using laminated edge beams and layers of t & g boarding to form the shell membrane. For roofs with a plan size of up to 6,000 × 6,000 only two layers of boards are required and these are laid parallel to the diagonals with both layers running in opposite directions. Roofs with a plan size of over 6,000 × 6,000 require three layers of board as shown below. The weather protective cover can be of any suitable flexible material such as built-up roofing felt, copper and lead. During construction the relatively lightweight roof is tied down to a framework of scaffolding until the anchorages and wall infilling have been completed. This is to overcome any negative and positive wind pressures due to the open sides.

Typical Details ~
Support Considerations - in timber hyperbolic paraboloid shell roofs only two supports are required.

Edge beams are in compression forces P are transmitted to B and D resulting in a vertical force V and a horizontal force H at both positions; therefore support columns are required at B and D.

Vertical force V is transmitted directly down the columns to a suitable foundation. The outward or horizontal force H can be accommodated in one of two ways:

If shell roof is to be supported at high corners the edge beams will be in tension and horizontal force will be inwards. This can be resisted by a diagonal strut between the high corners.

Combination Roof Support Example - 4 No. roof shells of equal loading joined together

Supports required at A; C; G and E. with ties between AC; CE; EG and GA. Forces at J cancel each other out; therefore no support required at J.
A form of stressed skin reinforced concrete construction also known as folded plate construction. The concept is to profile a flat slab into folds so that the structure behaves as a series of beams spanning parallel with the profile.

Optimum depth to span ratio is between 1:10 to 1:15, or a depth to width of not less than 1:10, whichever is greater.

Roof format ~ pitched, monitor or multi-fold.

Several slabs of narrow thickness are usually preferred to a few wider slabs as this reduces the material dead loading. Numerous design variations are possible particularly where counter-folds are introduced and the geometry developed to include bowed or arched spans extending to the ground.
Membrane Structure Principles ~ a form of tensioned cable structural support system with a covering of stretched fabric. In principle and origin, this compares to a tent with poles as compression members secured to the ground. The fabric membrane is attached to peripheral stressing cables suspended in a catenary between vertical support members.

Form ~ there are limitless three-dimensional possibilities. The following geometric shapes provide a basis for imagination and elegance in design:

- Hyperbolic paraboloid (Hypar)
- Barrel vault
- Conical or double conical

Hyperbolic paraboloid Barrel vault Conical

Double conical~
Simple support structure as viewed from the underside ~

Fabric ~ has the advantages of requiring minimal support, opportunity for architectural expression in colour and geometry and a translucent quality that provides an outside feel inside, whilst combining shaded cover from the sun and shelter from rain. Applications are generally attachments as a feature to entrances and function areas in prominent buildings, notably sports venues, airports and convention centres.

Materials ~ historically, animal hides were the first materials used for tensile fabric structures, but more recently woven fibres of hemp, flax or other natural yarns have evolved as canvas. Contemporary synthetic materials have a plastic coating on a fibrous base. These include polyvinyl chloride (PVC) on polyester fibres, silicone on glass fibres and polytetrafluorethylene (PTFE) on glass fibres. Design life is difficult to estimate, as it will depend very much on type of exposure. Previous use of these materials would indicate that at least 20 years is anticipated, with an excess of 30 years being likely. Jointing can be by fusion welding of plastics, bonding with silicone adhesives and stitching with glass threads.
Rooflights ~ the useful penetration of daylight through the windows in external walls of buildings is from 6'000 to 9'000 depending on the height and size of the window. In buildings with spans over 18'000 side wall daylighting needs to be supplemented by artificial lighting or in the case of top floors or single-storey buildings by rooflights. The total maximum area of wall window openings and rooflights for the various purpose groups is set out in the Building Regulations with allowances for increased areas if double or triple glazing is used. In pitched roofs such as northlight and monitor roofs the rooflights are usually in the form of patent glazing (see Long Span Roofs on pages 671 and 672). In flat roof construction natural daylighting can be provided by one or more of the following methods:

1. Lantern lights - see page 697.
2. Lens lights - see page 697.
3. Dome, pyramid and similar rooflights - see page 698.

Patent Glazing ~ these are systems of steel or aluminium alloy glazing bars which span the distance to be glazed whilst giving continuous edge support to the glass. They can be used in the roof forms noted above as well as in pitched roofs with profiled coverings where the patent glazing bars are fixed above and below the profiled sheets - see next page.

Typical Patent Glazing Bar Sections ~

Rooflights
Rooflights

Typical Pitched Roof Patent Glazing Details ~

- eaves closure piece
- lead flashing dressed over glazing bars
- patent glazing bars at 600 %
- single or double glazing
- bolt and clip
- insulation
- purlin
- cleat
- roof truss
- shelf angle bearer and fixing shoe

TOP CONNECTION
- patent glazing bar
- glass stop
- lead flashing
- bolt and clip
- flashing piece
- fixing shoe and draught excluder
- shelf angle bearer
- steel batten strip
- cleat
- purlin
- roof truss

BOTTOM CONNECTION

- profiled roof sheeting and insulation
Lantern Lights ~ these are a form of rooflight used in conjunction with flat roofs. They consist of glazed vertical sides and fully glazed pitched roof which is usually hipped at both ends. Part of the glazed upstand sides is usually formed as an opening light or alternatively glazed with louvres to provide a degree of controllable ventilation. They can be constructed of timber, metal or a combination of these two materials. Lantern lights in the context of new buildings have been generally superseded by the various forms of dome light (see next page).

Typical Lantern Light Details ~

Lens Lights ~ these are small square or round blocks of translucent toughened glass especially designed for casting into concrete and are suitable for use in flat roofs and curved roofs such as barrel vaults. They can also be incorporated into precast concrete frames for inclusion in a cast in-situ roof.

Typical Details ~
Dome, Pyramid and Similar Rooflights — these are used in conjunction with flat roofs and may be framed or unframed. The glazing can be of glass or plastics such as polycarbonate, acrylic, PVC and glass fibre reinforced polyester resin (grp). The whole component is fixed to a kerb and may have a raising piece containing hit and miss ventilators, louvres or flaps for controllable ventilation purposes.

Typical Details ~

CIRCULAR PLAN
- fixing clips
- kerb
- 600 to 1800

RECTANGULAR PLAN
- fixing clips
- flat, pyramid or segmental profiles
- 600 to 2400

DOME AND RAISING PIECE
- rubber seal
- centre pivot aluminium alloy louvres
- roof finish
- kerb and roof slab

DIRECT FIXED DOME
- double skin dome light
- aluminium alloy framing
- opening control
- fixing clip and rubber seal
- kerb and roof slab
Non-load-bearing Brick Panel Walls ~ these are used in conjunction with framed structures as an infill between the beams and columns. They are constructed in the same manner as ordinary brick walls with the openings being formed by traditional methods.

Basic requirements:
1. To be adequately supported by and tied to the structural frame.
2. Have sufficient strength to support own self-weight plus any attached finishes and imposed loads such as wind pressures.
3. Provide the necessary resistance to penetration by the natural elements.
4. Provide the required degree of thermal insulation, sound insulation and fire resistance.
5. Have sufficient durability to reduce maintenance costs to a minimum.
6. Provide for movements due to moisture and thermal expansion of the panel and for contraction of the frame.

Typical Details ~
Application – multi-storey buildings, where a traditional brick façade is required.

Brickwork movement – to allow for climatic changes and differential movement between the cladding and main structure, a ‘soft’ joint (cellular polyethylene, cellular polyurethane, expanded rubber or sponge rubber with polysulphide or silicon pointing) should be located below the support angle. Vertical movement joints may also be required at a maximum of 12 m spacing.

Lateral restraint – provided by normal wall ties between inner and outer leaf of masonry, plus sliding brick anchors below the support angle.
Infill Panel Walls ~ these can be used between the framing members of a building to provide the cladding and division between the internal and external environments and are distinct from claddings and facing:

Functional Requirements ~ all forms of infill panel should be designed and constructed to fulfil the following functional requirements:

1. Self-supporting between structural framing members.
2. Provide resistance to the penetration of the elements.
3. Provide resistance to positive and negative wind pressures.
4. Give the required degree of thermal insulation.
5. Give the required degree of sound insulation.
6. Give the required degree of fire resistance.
7. Have sufficient openings to provide the required amount of natural ventilation.
8. Have sufficient glazed area to fulfil the natural daylight and vision out requirements.
Brick Infill Panels ~ these can be constructed in a solid or cavity format, the latter usually having an inner skin of blockwork to increase the thermal insulation properties of the panel. All the fundamental construction processes and detail of solid and cavity walls (bonding, lintels over openings, wall ties, damp-proof courses, etc.) apply equally to infill panel walls. The infill panel walls can be tied to the columns by means of wall ties cast into the columns at 300 mm centres or located in cast-in dovetail anchor slots. The head of every infill panel should have a compressible joint to allow for any differential movements between the frame and panel.

Typical Details
Lightweight Infill Panels ~ these can be constructed from a wide variety or combination of materials such as timber, metals and plastics into which single or double glazing can be fitted. If solid panels are to be used below a transom they are usually of a composite or sandwich construction to provide the required sound insulation, thermal insulation and fire resistance properties.

Typical Example ~
Lightweight Infill Panels ~ these can be fixed between the structural horizontal and vertical members of the frame or fixed to the face of either the columns or beams to give a grid, horizontal or vertical emphasis to the façade thus:
Rainscreen Cladding ~ a surface finish produced by overcladding the external walls of new construction, or as a decorative façade and insulation enhancement to the external walls of existing construction. This concept provides an inexpensive *loose-fit* weather resistant layer. It is simple to replace to suit changes in occupancy, corporate image, client tastes, new material innovations and design changes in the appearance of buildings. Sustainability objectives are satisfied by re-use and refurbishment instead of demolition and rebuilding. Existing buildings can be seamlessly extended with uniformity of finish.

Principle Features ~

* Weather-proof outer layer includes plastic laminates, fibre-cement, ceramics, aluminium, enamelled steel and various stone effects.
* Decorative finish.
* Support frame attached to structural wall.
* Ventilated and drained cavity behind cladding.
* Facility for sound and thermal insulation.
* *Loose-fit* simple and economic for ease of replacement.
Standard sawn treated softwood sections of 38 mm minimum dimension.

50mm x 50mm vertical battens at 400mm to 600mm spacing

10mm to 15mm RSC overcladding

synthetic rubber weathering

50mm screw fixing with plastic cap and washer

vapour permeable breather membrane

infill or structural support wall

50mm breather membrane

synthetic rubber weathering

25mm

ventilated void

support wall

synthetic rubber seal

50mm x 50mm

100mm x 50mm

3mm space over synthetic rubber weathering

RSC - Timber Support Frame

Note: Timber support battens to be pre-treated with waterproof preservative.
Aluminium alloy standard profile sections with extendable support brackets.

- Profiled T or L carrier rail
- Rigid insulation batt
- Load bearing or infill wall
- Aluminium weathering
- Vertical section
- Ventilation void

RSC panel secured with brackets bolted to wall at 400mm to 600mm spacing

Self drill/tap screw
- Wall bracket
- EPDM* seal
- Insulation
- Bolted fixing

* Ethylene Propylene Diene Monomer synthetic rubber

Note: RSC materials should satisfy tests for fire propagation and surface spread of flame, ref. BS 476-6 and 7 respectively.
Glazed façades have been associated with hi-tech architecture since the 1970s. The increasing use of this type of cladding is largely due to developments in toughened glass and improved qualities of elastomeric silicone sealants. The properties of the latter must incorporate a resilience to varying atmospheric conditions as well as the facility to absorb structural movement without loss of adhesion.

Systems – two edge and four edge.

The two edge system relies on conventional glazing beads/fixings to the head and sill parts of a frame, with sides silicone bonded to mullions and styles.

The four edge system relies entirely on structural adhesion, using silicone bonding between glazing and support frame – see details.

Structural glazing, as shown on this and the next page, is in principle a type of curtain walling. Due to its unique appearance it is usual to consider full glazing of the building façade as a separate design and construction concept.

BS EN 13830: Curtain walling. Product standard: defines curtain walling as an external vertical building enclosure produced by elements mainly of metal, timber or plastic. Glass as a primary material is excluded.

![Diagram of structural sealant glazed cladding](image)
Structural glazing is otherwise known as frameless glazing. It is a system of toughened glass cladding without the visual impact of surface fixings and supporting components. Unlike curtain walling, the self-weight of the glass and wind loads are carried by the glass itself and transferred to a subsidiary lightweight support structure behind the glazing.

Assembly Principles ~

ELEVATION

- countersunk screw fixings
- silicone seal
- double glazed panel in storey heights

ASSEMBLY DETAIL

- st/st screw
- spacer
- toughened glass fibre washers
- back nut
- st/st angle bracket
- stainless steel angle bracket

FIXING DETAIL

- double glazed unit of tinted and toughened glass
- substructural support frame
Curtain Walling ~ this is a form of lightweight non-load bearing external cladding which forms a complete envelope or sheath around the structural frame. In low rise structures the curtain wall framing could be of timber or patent glazing but in the usual high rise context, box or solid members of steel or aluminium alloy are normally employed.

Basic Requirements for Curtain Walls:

1. Provide the necessary resistance to penetration by the elements.
2. Have sufficient strength to carry own self-weight and provide resistance to both positive and negative wind pressures.
3. Provide required degree of fire resistance – glazed areas are classified in the Building Regulations as unprotected areas; therefore any required fire resistance must be obtained from the infill or undersill panels and any backing wall or beam.
4. Be easy to assemble, fix and maintain.
5. Provide the required degree of sound and thermal insulation.
6. Provide for thermal and structural movements.
Typical Curtain Walling Details

Principles -

extruded plastic cover plate and screws

neoprene gaskets

eextruded aluminium alloy box mullion

double glazed fixed light

eextruded aluminium alloy box transom

transom located on spigot fixed to box mullion - connection to be mastic sealed

mullion bolted to angle brackets through slotted holes - angle brackets secured to floor edge with bolts located in dovetail anchor slots to provide for thermal and/or structural movement

infill or undersill panel
Fixing Curtain Walling to the Structure — in curtain walling systems it is the main vertical component or mullion which carries the loads and transfers them to the structural frame at every or alternate floor levels depending on the spanning ability of the mullion. At each fixing point the load must be transferred and an allowance made for thermal expansion and differential movement between the structural frame and curtain walling. The usual method employed is slotted bolt fixings.
Re-cladding existing framed buildings has become an economical alternative to complete demolition and rebuilding. This may be justified when a building has a change of use or it is in need of an image upgrade. Current energy conservation measures can also be achieved by the redressing of older buildings.

Typical section through an existing structural floor slab with a replacement system attached:

Framing Detail

- synthetic rubber gasket
- double glazed unit, outer pane tinted solar control glass
- hollow extruded polyester powder-coated aluminium transom or mullion
- extruded silicone sealing strip
- transom (see detail)
- mullion
- existing r.c. floor slab
- fire resisting silicone seal and neoprene isolating strip
- mineral wool cavity barrier in support tray
- mild steel fixing angles as framing support
- suspended ceiling
- floor slab closer
- bolts in expansion anchors

VERTICAL SECTION
Load bearing Concrete Panels — this form of construction uses storey height load bearing precast reinforced concrete perimeter panels. The width and depth of the panels is governed by the load(s) to be carried, the height and exposure of the building. Panels can be plain or fenestrated providing the latter leaves sufficient concrete to transmit the load(s) around the opening. The cladding panels, being structural, eliminate the need for perimeter columns and beams and provide an internal surface ready to receive insulation, attached services and decorations. In the context of design these structures must be formed in such a manner that should a single member be removed by an internal explosion, wind pressure or similar force, progressive or structural collapse will not occur, the minimum requirements being set out in Part A of the Building Regulations. Load bearing concrete panel construction can be a cost effective method of building.

Typical Details —

![Diagram of load bearing concrete panels]
Concrete Cladding Panels ~ these are usually of reinforced precast concrete to an undersill or storey height format, the former being sometimes called apron panels. All precast concrete cladding panels should be designed and installed to fulfil the following functions:

1. Self-supporting between framing members.
2. Provide resistance to penetration by the natural elements.
3. Resist both positive and negative wind pressures.
4. Provide required degree of fire resistance.
5. Provide required degree of thermal insulation by having the insulating material incorporated within the body of the cladding or alternatively allow the cladding to act as the outer leaf of cavity wall panel.
6. Provide required degree of sound insulation.

Undersill or Apron Cladding Panels ~ these are designed to span from column to column and provide a seating for the windows located above. Levelling is usually carried out by wedging and packing from the lower edge before being fixed with grouted dowels.

Typical Details ~

![Diagram of cladding panel with exposed aggregate face]
Storey Height Cladding Panels — these are designed to span vertically from beam to beam and can be fenestrated if required. Levelling is usually carried out by wedging and packing from floor level before being fixed by bolts or grouted dowels.

Typical Details ~

![Diagram of concrete cladding details](image)

- **Sealant**
- **Horizontal Joint**
- **Storey Height Cladding Panel**
- **Stiffening ribs to panel edges**
- **Cavity**
- **Lightweight block inner wall forming cavity**
- **Condensation groove drained to outside through panel**
- **Horizontal joint with back seal**
- **Storey height cladding panel**
- **Fixing bolt or dowel**
- **Reinforced concrete floor slab**
- **Reinforced concrete edge beam**
- **Compression joint**
- **Non-ferrous metal fixing bracket with slotted holes for fixing bolts to allow for panel adjustment and a compressible washer between the panel and bracket to prevent transfer of load**
- **Fixing bolt or dowel**
- **Packing as required**
- **Reinforced concrete floor slab and edge beam**
- **Compression joint**

Vertical Section
Single Stage ~ the application of a compressible filling material and a weatherproofing sealant between adjacent cladding panels. This may be adequate for relatively small areas and where exposure to thermal or structural movement is limited. Elsewhere, in order to accommodate extremes of thermal movement between exposed claddings, the use of only a sealant and filler would require an over-frequency of joints or over-wide joints that could slump or fracture.

Two Stage ~ otherwise known as open drained joints. The preferred choice as there is a greater facility to absorb movement. Drained joints to cladding panels comprise a sealant to the inside or back of the joint and a baffle to the front, both separated by an air seal.

Comparison of single- and two-stage jointing principles ~

![Diagram showing single stage and two stage jointing principles]

Plan views

Typical coefficients of linear thermal expansion (10⁻⁶ m/mK) ~
Dense concrete aggregate 14, lightweight concrete aggregate 10.

Ref. BS 6093: Design of joints and jointing in building construction.
Where the horizontal lapped joint between upper and lower cladding panels coincides with the vertical open drained joint, a stepped apron flashing is required to weather the intersection. Lead is the natural choice for this, but reinforced synthetic rubber or reinforced plastic sheet may be preferred to avoid possible lead oxide staining over the panel surface.

Baffle material is traditionally of non-ferrous metal such as copper, but like lead this can cause staining to the surface. Neoprene, butyl rubber or PVC are alternatives.
Gasket ~ an alternative to using mastic or sealant to close the gap between two cladding panels. They are used specifically where movements or joint widths are greater than could be accommodated by sealants. For this purpose a gasket is defined in BS 6093 as ‘flexible, generally elastic, preformed material that constitutes a seal when compressed’.

Location and Fit ~ as shown on the next page, a recess is provided in at least one of the two adjacent claddings. To be effective contact surfaces must be clean and free of imperfections for a gasket to exert pressure on adjacent surfaces and to maintain this during all conditions of exposure. To achieve this, greater dimensional accuracy in manufacture and assembly of components is necessary relative to other sealing systems.

Profile ~ solid or hollow extrusions in a variety of shapes. Generally non-structural but vulcanised polychloroprene rubber can be used if a structural specification is required.

Materials (non-structural) ~ synthetic rubber including neoprene, silicone, ethylene propylene diene monomer (EPDM) and thermoplastic rubber (TPR). These materials are very durable with excellent resistance to compression, heat, water, ultra-violet light, ozone, ageing, abrasion and chemical cleaning agents such as formaldehyde. They also have exceptional elastic memory, i.e. will resume original shape after stressing. Polyvinyl chloride (PVC) and similar plastics can also be used but they will need protection from the effects of direct sunlight.

Refs.:
BS 4255-1: Rubber used in preformed gaskets for weather exclusion from buildings. Specification for non-cellular gaskets.

BS 6093: Design of joints and jointing in building construction. Guide.
Non-structural gasket types (shown plan view) ~

HOLLOW/TUBULAR (cast into concrete during manufacture)

- pcc cladding panels
- vertical recess

SOLID DOUBLE SPLAY (fitted on site during assembly)

- recess in pcc panel
- External face

SOLID CRUCIFORM

- shoulder to tapered recess
- drainage zone

Gaskets have other applications to construction. See Double Glazing, Triple Glazing and Curtain Walling.
Concrete Surface Finishes ~ it is not easy to produce a concrete surface with a smooth finish of uniform colour direct from the mould or formwork since the colour of the concrete can be affected by the cement and fine aggregate used. The concrete surface texture can be affected by the aggregate grading, cement content, water content, degree of compaction, pin holes caused by entrapped air and rough patches caused by adhesion to parts of the formworks. Complete control over the above mentioned causes is difficult under ideal factory conditions and almost impossible under normal site conditions. The use of textured and applied finishes has therefore the primary function of improving the appearance of the concrete surface and in some cases it will help to restrict the amount of water which reaches a vertical joint.

Casting ~ concrete components can usually be cast in-situ or precast in moulds. Obtaining a surface finish to concrete cast in-situ is usually carried out against a vertical face, whereas precast concrete components can be cast horizontally and treated on either upper or lower mould face. Apart from a plain surface concrete the other main options are:

1. Textured and profiled surfaces.
2. Tooled finishes.
3. Cast-on finishes (see next page).
4. Exposed aggregate finishes (see next page).

Textured and Profiled Surfaces ~ these can be produced on the upper surface of a horizontal casting by rolling, tamping, brushing and sawing techniques but variations in colour are difficult to avoid. Textured and profiled surfaces can be produced on the lower face of a horizontal casting by using suitable mould linings.

Tooled Finishes ~ the surface of hardened concrete can be tooled by bush hammering, point tooling and grinding. Bush hammering and point tooling can be carried out by using an electric or pneumatic hammer on concrete which is at least three weeks old provided gravel aggregates have not been used, since these tend to shatter leaving surface pits. Tooling up to the arris could cause spalling; therefore a 10 mm wide edge margin should be left untooled. Grinding the hardened concrete consists of smoothing the surface with a rotary carborundum disc which may have an integral water feed. Grinding is a suitable treatment for concrete containing the softer aggregates such as limestone.
Cast-on Finishes ~ these finishes include split blocks, bricks, stone, tiles and mosaic. Cast-on finishes to the upper surface of a horizontal casting are not recommended although such finishes could be bedded onto the fresh concrete. Lower face treatment is by laying the materials with sealed or grouted joints onto the base of mould or alternatively the materials to be cast-on may be located in a sand bed spread over the base of the mould.

Exposed Aggregate Finishes ~ attractive effects can be obtained by removing the skin of hardened cement paste or surface matrix, which forms on the surface of concrete, to expose the aggregate. The methods which can be employed differ with the casting position.

Horizontal Casting † treatment to the upper face can consist of spraying with water and brushing some two hours after casting, trowelling aggregate into the fresh concrete surface or by using the felt-float method. This method consists of trowelling 10mm of dry mix fine concrete onto the fresh concrete surface and using the felt pad to pick up the cement and fine particles from the surface leaving a clean exposed aggregate finish.

Treatment to the lower face can consist of applying a retarder to the base of the mould so that the partially set surface matrix can be removed by water and/or brushing as soon as the castings are removed from the moulds. When special face aggregates are used the sand bed method could be employed.

Vertical Casting † exposed aggregate finishes to the vertical faces can be obtained by tooling the hardened concrete or they can be cast-on by the aggregate transfer process. This consists of sticking the selected aggregate onto the rough side of pegboard sheets with a mixture of water-soluble cellulose compounds and sand fillers. The cream-like mixture is spread evenly over the surface of the pegboard to a depth of one-third the aggregate size and the aggregate sprinkled or placed evenly over the surface before being lightly tamped into the adhesive. The prepared board is then set aside for 36 hours to set before being used as a liner to the formwork or mould. The liner is used in conjunction with a loose plywood or hardboard baffle placed against the face of the aggregate. The baffle board is removed as the concrete is being placed.
Special Effects ~ coloured cements and variations in aggregate content can be used with, or as a separate effect from, the surface treatments considered on the previous two pages. Two other special effect concretes that have been used extensively are:

- Granolithic
- Terrazzo (see next page)

Granolithic ~ a mix of cement, fine aggregate and granite or whinstone chippings in the ratio of 1:1:2 by volume. A dense, hard-wearing concrete characterised by the sparkle of granite. Specific applications include heavily pedestrianised floors particularly in public buildings, schools, entrance lobbies to apartment blocks and for floors in industrial production areas. Easy maintenance and durability are the main benefits, although it is notably cold to the touch and noisy under foot traffic.

Monolithic application to a standard concrete base is preferred. This should be within three hours of the substrate being placed. Otherwise a matured concrete base will need to be hacked to provide a key and then primed with a cement slurry to ensure adhesion. A PVA bonding agent may also be used as an alternative surface primer. The granolithic is effectively a screed of at least 20mm thickness as applied to a fresh concrete substrate, or at least 40mm thickness as applied to hardened concrete.

<table>
<thead>
<tr>
<th>Base concrete thickness (mm)</th>
<th>Max. granolithic bay size (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
</tr>
</tbody>
</table>

Note: Bay joints abutted to coincide with base concrete joints.

Surface treatment is by steel trowelling at least three times at two- to three-hour intervals to produce a hard, uniform and abrasion resistant finish.

An economical alternative that may be adequate in less heavily used situations can be achieved by sprinkling the surface of newly laid wet concrete with a cement and granite mix in the ratio of 1:2. Finishing is with a wood float and steel trowel.
Terrazzo ~ an attractive concrete composed of coloured cement and fine aggregate in the ratio of 1:2 by volume, with irregular shaped fragments of marble bedded in randomly and close together.

Applied monolithically over a 15 to 25mm screed of cement and sand (1:3) with embedded non-ferrous metal or plastic dividing strips to produce maximum areas of 1m² over a standard concrete sub-base. Finishing is by light trowelling, coarse and then fine grinding with carborundum stone and water, followed by polishing. All this is a time consuming process extending over several days, thereby limiting the use of terrazzo to high budget projects.

Marble aggregate grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1.5 to 2.5 (small panels)</td>
</tr>
<tr>
<td>0</td>
<td>2.5 to 3.0</td>
</tr>
<tr>
<td>1</td>
<td>3.0 to 6.0</td>
</tr>
<tr>
<td>2</td>
<td>6.0 to 10</td>
</tr>
<tr>
<td>3</td>
<td>10 to 12</td>
</tr>
<tr>
<td>4</td>
<td>12 to 20</td>
</tr>
<tr>
<td>5</td>
<td>20 to 25</td>
</tr>
</tbody>
</table>

Monolithic terrazzo floor construction

Synthetic polymer or resin-based binders are now quite common with thin-set terrazzo finishes of 6 to 10mm thickness. These are less susceptible to shrinkage cracking, but are limited to internal situations as they not as robust as traditional cement-based terrazzo.
Discoloration ~ manifests as a patchy surface finish. It is caused where there are differences in hydration or moisture loss during the concrete set, due to concentrations of cement or where aggregates become segregated. Both of these will produce moisture content differences at the surface. Areas with a darker surface indicate the greater loss of moisture, possibly caused by insufficient mixing and/or poorly sealed formwork producing differences in surface absorption.

Crazing ~ surface shrinkage cracks caused by a cement-rich surface skin or by too much water in the mix. Out-of-date cement can have the same effect as well as impairing the strength of the concrete.

Lime bloom ~ a chalky surface deposit produced when the calcium present in cement reacts to contamination from moisture in the atmosphere or rainwater during the hydration process. Generally resolved by dry brushing or with a 20:1 water/hydrochloric acid wash.

Scabbing ~ small areas or surface patches of concrete falling away as the formwork is struck. Caused by poor preparation of formwork, i.e. insufficient use of mould oil or by formwork having a surface texture that is too rough.

 Blow holes ~ otherwise known as surface popping. Possible causes are use of formwork finishes with nil or low absorbency or by insufficient vibration of concrete during placement.

Rust staining ~ if not caused by inadequate concrete cover to reinforcement, this characteristic is quite common where iron-rich aggregates or pyrites are used. Rust-brown stains are a feature and there may also be some cracking where the iron reacts with the cement.

Dusting ~ caused by unnaturally rapid hardening of concrete and possibly where out-of-date cement is used. The surface of set concrete is dusty and friable.
This page intentionally left blank
7 INTERNAL CONSTRUCTION AND FINISHES

INTERNAL ELEMENTS
INTERNAL WALLS
CONSTRUCTION JOINTS
PARTITIONS AND TIMBER STRUT DESIGN
PLASTERS, PLASTERING AND PLASTERBOARD
DRY LINING TECHNIQUES
WALL TILING
DOMESTIC FLOORS AND FINISHES
LARGE CAST IN-SITU GROUND FLOORS
CONCRETE FLOOR SCREEDS
TIMBER SUSPENDED UPPER FLOORS
TIMBER BEAM DESIGN
REINFORCED CONCRETE SUSPENDED FLOORS
PRECAST CONCRETE FLOORS
RAISED ACCESS FLOORS
SOUND INSULATION
TIMBER, CONCRETE AND METAL STAIRS
INTERNAL DOORS
FIRE-RESISTING DOORS
PLASHERBOARD CEILINGS
SUSPENDED CEILINGS
PAINTS AND PAINTING
JOINERY PRODUCTION
COMPOSITE BOARDING
PLASTICS IN BUILDING
Internal Elements

NB. roof coverings, roof insulation and guttering not shown.

NB. All work below dpc level is classed as substructure.
Internal Walls - their primary function is to act as a vertical divider of floor space and in so doing form a storey-height enclosing element.

Other Possible Functions ~

constructed as a load bearing or non-load bearing wall

provide a suitable background for finishes and decorations

provide a degree of fire resistance

provide a degree of sound insulation

provide a degree of thermal insulation

provide the required degree of durability

provide for low future maintenance

provide a suitable medium for housing services

provide a means of access to, egress from and communication between internal spaces

provide borrowed light facilities

provide a good fixing medium for trims

provide the necessary resistance to impact damage and vibration due to doors being slammed
Internal Walls - there are two basic design concepts for internal walls: those which accept and transmit structural loads to the foundations are called Load bearing Walls and those which support only their own self-weight and do not accept any structural loads are called Non-load bearing Walls or Partitions.

Typical Examples ~

![Diagram showing different types of internal walls: Load bearing and Non-load bearing.](image)

NB. guttering and roof coverings not shown.
Internal Brick Walls ~ these can be load bearing or non-load bearing (see previous page) and for most two-storey buildings are built in half brick thickness in stretcher bond.

Typical Details ~
Internal Block Walls ~ these can be load bearing or non-load bearing (see page 730); the thickness and type of block to be used will depend upon the loadings it has to carry.

Typical Details ~

LOAD-BEARING WALL

- Ceiling joists transmit loads to wall
- Floor boarding
- Lapped upper floor joists bearing on wall
- DPC and DPM to have continuity through wall
- Foundations

JUNCTIONS AND OPENINGS

- Roof struts transmit loads from purlins to wall
- Wall plate
- Block internal load bearing wall
- External wall
- Internal wall
- Wall transmits combined roof and wall loads to foundations
- Every alternate course block bonded to external wall
- Expanded metal strip built into every bed joint of butt jointed internal wall
- Concrete lintel - size governed by opening span and loading - end bearing 100 mm min.
Internal Walls ~ an alternative to brick and block bonding shown on the preceding two pages is application of wall profiles. These are quick and simple to install, provide adequate lateral stability, sufficient movement flexibility and will overcome the problem of thermal bridging where a brick partition would otherwise bond into a block inner leaf. They are also useful for attaching extension walls at right angles to existing masonry.

Application ~

- blockwork inner leaf of cavity wall
- galvanised or stainless steel profile, plugged and screwed to wall
- loose fit connector tie
- blockwork partition

40 mm
8 mm

40 mm
8 mm

screw slot

TIE ~ every block course and every 3rd brick course

ribbed or perforated surface

30 mm
100 mm

WALL PROFILE ~ 2.4 m long
Movement or Construction Joints - provide an alternative to ties or mesh reinforcement in masonry bed joints. Even with reinforcement, lightweight concrete block walls are renowned for producing unsightly and possibly unstable shrinkage cracks. Galvanised or stainless steel formers and ties are built in at a maximum of 6m horizontal spacing and within 3m of corners to accommodate initial drying, shrinkage movement and structural settlement. One side of the former is fitted with profiled or perforated ties to bond into bed joints and the other has plastic sleeved ties. The sleeved tie maintains continuity, but restricts bonding to allow for controlled movement.

NB. Movement joints in clay brickwork should be provided at 12m maximum spacing and 7.5 to 9m for calcium silicate.
Refs.: BS EN 1996: Design of masonry structures.
PD 6697: Recommendations for the design of masonry structures.
Location ~ specifically in positions of high stress.
Reinforcement ~ expanded metal or wire mesh (see page 388).
Mortar Cover ~ 13 mm minimum thickness. 25 mm to external faces.

Openings ~

Concentrated Load ~

Suspended Floor~

Differential Movement ~ may occur where materials such as steel, brick, timber or dense concrete abut with or bear on lightweight concrete blocks. A smooth separating interface of two layers of non-compressible dpc or similar is suitable in this situation.
Typical Examples ~

Solid brickwork

<table>
<thead>
<tr>
<th>Fire resistance (minutes)</th>
<th>Material and application</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (mm)</td>
<td></td>
</tr>
<tr>
<td>102.5</td>
<td>Clay bricks. Load bearing or non-load bearing wall.</td>
</tr>
<tr>
<td>215</td>
<td>Concrete or sand/lime bricks. Load bearing or non-load bearing wall.</td>
</tr>
</tbody>
</table>

NB. For practical reasons a standard one-brick dimension is given for 240 minutes' fire resistance. Theoretically a clay brick wall can be 170 mm and a concrete or sand/lime brick wall 200 mm. finishes excluded.

Solid concrete blocks of lightweight aggregate

<table>
<thead>
<tr>
<th>Fire resistance (minutes)</th>
<th>Material and application</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (mm)</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Load bearing, 2.8–3.5 N/mm² compressive strength.</td>
</tr>
<tr>
<td>130</td>
<td>Load bearing, 4.0–10 N/mm² compressive strength.</td>
</tr>
<tr>
<td>200</td>
<td>Non-load-bearing, 2.8–3.5 N/mm² compressive strength.</td>
</tr>
<tr>
<td>90</td>
<td>Non-load bearing, 4.0–10 N/mm² compressive strength.</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

NB. Finishes excluded.
Party Wall ~ a wall separating different owners’ buildings, i.e. a wall that stands astride the boundary line between property of different ownerships. It may also be solely on one owner’s land but used to separate two buildings.

Where an internal separating wall forms a junction with an external cavity wall, the cavity must be fire stopped by using a barrier of fire-resisting material. Depending on the application, the material specification is of at least 30 minutes’ fire resistance. Between terraced and semi-detached dwellings the location is usually limited by the separating elements. For other buildings additional fire stopping will be required in constructional cavities such as suspended ceilings, rainscreen cladding and raised floors. The spacing of these cavity barriers is generally not more than 20 m in any direction, subject to some variation as indicated in Volume 2 of Approved Document B.

Refs.:
Party Wall Act 1996.
Building Regulations, A.D. E: Resistance to the passage of sound.
Requirements for fire- and sound-resisting construction ~

Typical masonry construction ~

- cavity stopped with a non-combustible mineral wool closer unless cavity is fully filled with mineral wool insulation
- external cavity wall
- solid or cavity construction of separating wall

Typical timber framed construction ~

- cavity fire stopped as above
- external cavity wall
- one layer 12.5 mm plasterboard lining, two layers where there is a separating floor
- cavity construction separating wall
Internal Partitions ~ these are vertical dividers which are used to separate the internal space of a building into rooms and circulation areas such as corridors. Partitions which give support to a floor or roof are classified as load bearing whereas those which give no such support are called non-load bearing.

Load Bearing Partitions ~ these walls can be constructed of bricks, blocks or in-situ concrete by traditional methods and have the design advantages of being capable of having good fire resistance and/or high sound insulation. Their main disadvantage is permanence giving rise to an inflexible internal layout.

Non-load Bearing Partitions ~ the wide variety of methods available makes it difficult to classify the form of partition but most can be placed into one of three groups:

1. Masonry partitions.
2. Stud partitions – see pages 740 to 743.
3. Demountable partitions – see pages 744 and 745.

Masonry Partitions ~ these are usually built with blocks of clay or lightweight concrete which are readily available and easy to construct thus making them popular. These masonry partitions should be adequately tied to the structure or load bearing walls to provide continuity as a sound barrier, provide edge restraint and to reduce the shrinkage cracking which inevitably occurs at abutments. Wherever possible openings for doors should be in the form of storey-height frames to provide extra stiffness at these positions.
Timber Stud Partitions - these are non-load bearing internal dividing walls which are easy to construct, lightweight, adaptable and can be clad and infilled with various materials to give different finishes and properties. The timber studs should be of prepared or planed material to ensure that the wall is of constant thickness with parallel faces. Stud spacings will be governed by the size and spanning ability of the facing or cladding material.

Typical Details ~
Although generally non-load bearing, timber stud partitions may carry some of the load from the floor and roof structure. In these situations the vertical studs are considered struts.

Example ~ using the stud frame dimensions shown on the previous page, with each stud (strut) supporting a 5kN load.

Slenderness ratio (SR) of section = effective length ÷ breadth
On the partition face = 1250 ÷ 45 = 27.8
At right angles to the face = 2500 ÷ 95 = 26.3
Timber of strength classification C18 (see pages 141 and 142) has the following properties:
- Modulus of elasticity = 6000N/mm²
- Grade stress in compression parallel to the grain = 7.1N/mm²
- Grade stress ratio = 6000 ÷ 7.1 = 845

See table on page 194. By coordinating the SR of 27.8 (greater value) with a grade stress ratio of 845, a figure of 0.4 is obtained by interpolation.

Allowable applied stress is 7.1N/mm² × 0.4 = 2.84N/mm²
Applied stress = axial load ÷ strut section area
= 5000N ÷ (95mm × 45mm) = 1.17N/mm²
1.17N/mm² is well within the allowable stress of 2.84N/mm²; therefore 95mm × 45mm struts are adequate.

NB. See pages 192 to 194 for an application to dead shoring. Struts in trusses and lattice frames can also be designed using the same principles.
Stud Partitions ~ these non-load bearing partitions consist of a framework of vertical studs to which the facing material can be attached. The void between the studs created by the two faces can be infilled to meet specific design needs. The traditional material for stud partitions is timber (see Timber Stud Partitions on page 740) but a similar arrangement can be constructed using metal studs faced on both sides with plasterboard.

Typical Metal Stud Partition Details ~

vertical section
HORIZONTAL SECTION
Plasterboard lining to stud-framed partition walls satisfies the Building Regulations, Approved Document B - Fire safety, as a material of ‘limited combustibility’ with a Class O rating for surface spread of flame (Class O is better than Classes 1 to 4 as determined by BS 476-7). The plasterboard dry walling should completely protect any combustible timber components such as sole plates. The following shows typical fire resistances as applied to a metal stud frame:

30-minute fire resistance

75 mm height limit 2.500

12.5 mm wallboard

metal channel stud frame

self-drilling/self-tapping screw fixings

60(90)-minute fire resistance

100 mm (110)

height limit 3.400 (3.700)

2 No. 12.5 (15) mm wallboards

staggered screw fixings

120-minute fire resistance

110 mm

height limit 4.200

2 No. 15 mm firecheck plasterboards

metal box stud frame

NB. For plasterboard types see page 753.
Partitions ~ these can be defined as vertical internal space dividers and are usually non-load bearing. They can be permanent, constructed of materials such as bricks or blocks or they can be demountable constructed using lightweight materials and capable of being taken down and moved to a new location incurring little or no damage to the structure or finishes. There is a wide range of demountable partitions available constructed from a variety of materials giving a range that will be suitable for most situations. Many of these partitions have a permanent finish which requires no decoration and only periodic cleaning in the context of planned maintenance.

Typical Example ~
Demountable Partitions — it can be argued that all internal non-load bearing partitions are demountable and therefore the major problem is the amount of demountability required in the context of ease of moving and the possible frequency anticipated. The range of partitions available is very wide including stud partitions, framed panel partitions (see Demountable Partitions on page 744), panel to panel partitions and sliding/folding partitions which are similar in concept to industrial doors (see Industrial Doors on pages 467 to 469). The latter type is often used where movement of the partition is required frequently. The choice is therefore based on the above stated factors taking into account finish and glazing requirements together with any personal preference for a particular system but in all cases the same basic problems will have to be considered —

![Diagram of demountable partitions](image-url)

METHOD 1 - easily demounted and re-erected; good sound insulation can be achieved.

METHOD 2 - easily demounted and re-erected if ceiling can take pressure; flanking sound may be a problem.

METHOD 3 - alternative to 2.

METHOD 4 - alternative to 3.
Plaster ~ this is a wet mixed material applied to internal walls as a finish to fill in any irregularities in the wall surface and to provide a smooth continuous surface suitable for direct decoration. The plaster finish also needs to have a good resistance to impact damage. The material used to fulfil these requirements is gypsum plaster. Gypsum is a crystalline combination of calcium sulphate and water. The raw material is crushed, screened and heated to dehydrate the gypsum and this process together with various additives defines its type as set out in BS EN 13279-1: Gypsum binders and gypsum plasters. Definitions and requirement.

Plaster of Paris is quick-setting plaster (5 to 10 minutes) and is therefore not suitable for walls but can be used for filling cracks and cast or run mouldings. Browning and bonding plasters are used as undercoats to premixed lightweight plasters.

All plaster should be stored in dry conditions since any absorption of moisture before mixing may shorten the normal setting time of about one and a half hours which can reduce the strength of the set plaster. Gypsum plasters are not suitable for use in temperatures exceeding 43°C and should not be applied to frozen backgrounds.

A good key to the background and between successive coats is essential for successful plastering. Generally brick and block walls provide the key whereas concrete unless cast against rough formwork will need to be treated to provide the key.
Internal Wall Finishes ~ these can be classified as wet or dry. The traditional wet finish is plaster which is mixed and applied to the wall in layers to achieve a smooth and durable finish suitable for decorative treatments such as paint and wallpaper.

Most plasters are supplied in 25kg paper sacks and require only the addition of clean water or sand and clean water according to the type of plaster being used.

Typical Method of Application ~

1. PREPARATION
 - surface well brushed with hard broom to remove loose material and dust
 - chases cut before plastering
 - any metal fixings to be painted or galvanised to prevent staining

2. UNDERCOATING
 - thin coats of undercoat plaster applied and built up to required thickness
 - floated undercoat brought to a true and level surface with a straight edge
 - fine wooden scratcher used to form key for finishing coat

3. FINISHING
 - finishing coat of plaster applied with steel trowel to give a smooth finish
 - trims and decorative finishes applied after plaster has set and cured

Textured surfaces can be obtained by using a sponge, hair brush, felt float or steel combs

TYPICAL DATA FOR BRICK AND BLOCK BACKGROUND

- Undercoat ~ 8 to 10mm thick
- Finishing coat ~ 2mm thick
- Setting times:
 - Undercoat ~ 2 hours
 - Finishing coat ~ 1 hour
Plaster Application

Background ~ ideally level and of consistent material. If there are irregularities, three applications may be required: render (ct. and sand) 10-12mm, undercoat plaster 6-8mm and finish plaster 2mm.

Difficult backgrounds such as steel or glazed surfaces require a PVA bonding agent or a cement slurry brushed on to improve plaster adhesion. A wire mesh or expanded metal surface attachment may also be required with metal lathing plaster as the undercoat. This may be mixed with sand in the ratio of 1:1.5.

Soft backgrounds of cork, fibreboard or expanded plastics should have wire mesh or expanded metal stapled to the surface. An undercoat of lightweight bonding plaster with compatible finish is suitable.

Dense regular surfaces of low-medium suction such as plasterboard require only one finishing coat of specially formulated finishing plaster.

Corners ~ reinforced with glass-fibre scrim tape or fine wire mesh to prevent shrinkage cracking at the junction of plasterboard ceiling and wall. Alternatively a preformed gypsum plaster moulding can be nailed or attached with plaster adhesive (see page 844). Expanded metal angle beads are specifically produced for external corner reinforcement. These are attached with plaster dabs or galvanised nails before finishing just below the nosing.
Stucco is often used as a generalisation for plastered and rendered finishes to walls. This is very limited, as in the context of decoration and architecture it is a term that has acquired many interpretations and definitions that describe different styles of plastering and rendering to both interior and exterior walls. Some of these are used in the historical context and include elaborate ornamentation, particularly as applied to ancient buildings and classic styles of architecture. Stucco is also used as a material description of the mix composition, particularly with regard to its traditional lime base.

Architectural ~ often represented by carved, sculpted or moulded ornamental features as elaborate finish treatments to palaces, churches, mosques and other prominent buildings of religious and historical importance, not least those of the ancient Greek, Roman and Persian classical periods. Of particular architectural importance are the creative interpretations applied to the interior design and architectural features of Baroque (17th-century Italian) and Rococo (18th-century French) buildings.

Material (Traditional) ~ a mix of hydrated lime, fine sand and water used as a smooth, dense, hard covering to interior and exterior masonry walls. Animal or plant fibres may be added for strength with pigments and dyes for colour enhancement. Applied in two thin coats to masonry or three coats (scratch, brown and finish) to timber laths over timber framing.

Material (Contemporary) ~ typically composed of 3 parts hydrated lime to 10 parts fine sand with a nominal amount of cement to improve durability and sufficient water to make the mix workable. Glass fibres and synthetic acrylics may be added for strength. This mix can be used for repairs and renovation work to older buildings as it is less likely to crack or craze than cement and sand renders.

A high quality variation for interiors comprises fine gypsum plaster or hydrated lime mixed with marble dust and water to produce special feature finishes. There are many trade and commercial terms for this surface treatment, including polished plaster, marmorino and Venetian plaster.
Dry Lining Techniques

Plasterboard ~ a board material comprising two outer layers of lining paper with gypsum plaster between – two edge profiles are generally available:

1. Tapered Edge ~ a flush seamless surface is obtained by filling the joint with a special filling plaster, applying a joint tape over the filling and finishing with a thin layer of joint filling plaster, the edge of which is feathered out using a slightly damp jointing sponge or steel trowel.

2. Square Edge ~ edges are close butted and finished with a cover fillet or the joint is covered with a glass-fibre scrim tape before being plastered.

Some jointing details are shown on page 755.

Typical Details ~

[Diagram showing details of plasterboard installation and jointing techniques]
Dry Linings ~ an alternative to wet finishing internal wall surfaces with render and plaster. Dry lining materials can be plasterboard, insulating fibre board, hardboard, timber boards and plywood, all of which can be supplied with a permanent finish or they can be supplied to accept an applied finish such as paint or wallpaper. For plasterboard a dry wall sealer should be applied before wallpapering to permit easier removal at a later date. The main purpose of lining an internal wall surface is to provide an acceptable but not necessarily an elegant or expensive wall finish. It is also very difficult and expensive to build a brick or block wall which has a fair face to both sides since this would involve the hand selection of bricks and blocks to ensure a constant thickness together with a high degree of skill to construct a satisfactory wall. The main advantage of dry lining walls is that the drying out period required with wet finishes is eliminated. By careful selection and fixing of some dry lining materials it is possible to improve the thermal insulation properties of a wall. Dry linings can be fixed direct to the backing by means of a recommended adhesive or they can be fixed to a suitable arrangement of wall battens.

Typical Example ~

- strips of contact adhesive applied to wall and backs of boards as recommended by manufacturer so that strips on wall and boards match
- wall to be sound, reasonably flat, dry and free of dust, dirt and grease
- lining boards pressed firmly onto adhesive
- backing wall
- abutment joints can be moulded as a feature, covered with a fillet or if lining is to be decorated they can be filled or taped over
- backing wall
- holes for service outlets cut prior to fixing the boards

NB. For further examples see next page.
Typical Examples using Plywood or Similar Boarding ~

38 x 19 softwood head batten fixed to wall and packed as required to align with other battens.

38 x 19 noggins at 1-200 maximum centres.

38 x 20 softwood bottom or skirt batten.

Cove moulding or butt joint with ceiling.

Backing wall butt, moulded or cover fillet to joint.

1-200 wide full height wallboards fixed with lost head nails or with adhesive.

38 x 19 softwood horizontal battens at 600 c/c fixed to wall and packed as required.

Noggins at joints if required.

Aluminium foil lining if required.

Skirting.

Holes for service outlets cut prior to fixing the boards.

*alternatively use polythene sheet as a vapour check.
Plasterboard Types ~ to BS EN 520: Gypsum plasterboards. Definitions, requirements and test methods.

BS PLASTERBOARDS:

1. **Wallboard** † ivory faced for taping, jointing and direct decoration; grey faced for finishing plaster or wall adhesion with plaster dabs. General applications, i.e. internal walls, ceilings and partitions. Thicknesses: 9.5, 12.5 and 15 mm. Widths: 900 and 1200 mm. Lengths: vary between 1800 and 3000 mm. Edge profile square or tapered.

2. **Baseboard** † lining ceilings requiring direct plastering. Thickness: 9.5 mm. Width: 900 mm. Length: 1220 mm. Thickness: 12.5 mm. Width: 600 mm. Length: 1220 mm. Edge profile square.

3. **Moisture Resistant** † wallboard for bathrooms and kitchens. Pale green colour to face and back. Ideal base for ceramic tiling or plastering. Thicknesses: 12.5 mm and 15 mm. Width: 1200 mm. Lengths: 2400, 2700 and 3000 mm. Square and taper edges available.

4. **Firecheck** † wallboard of glass fibre reinforced vermiculite and gypsum for fire cladding. Pink face and grey back. Thicknesses: 12.5 and 15 mm. Widths: 900 and 1200 mm. Lengths: 1800, 2400, 2700 and 3000 mm. A 25 mm thickness is also produced, 600 mm wide × 3000 mm long. Plaster finished if required. Square or tapered edges.

5. **Plank** † used as fire protection for structural steel and timber, in addition to sound insulation in wall panels and floating floors. Thickness: 19 mm. Width: 600 mm. Lengths: 2350, 2400, 2700 and 3000 mm. Ivory face with grey back. Tapered edge.

NON-STANDARD PLASTERBOARDS:

1. **Contour** † only 6 mm in thickness to adapt to curved featurework. Width: 1200 mm. Lengths: 2400 mm and 3000 mm.

2. **Vapourcheck** † a metallized polyester wallboard lining to provide an integral water vapour control layer. Thicknesses: 9.5 and 12.5 mm. Widths: 900 and 1200 mm. Lengths: vary between 1800 and 3000 mm.

3. **Thermalcheck** † various expanded or foamed insulants are bonded to wallboard. Approximately 25–50 mm overall thickness in board sizes 1200 × 2400 mm.
Fixing ~ the detail below shows board fixing with nails or screws to timber battens. This is an alternative to using plaster dabs and pads shown on page 750.

Typical Fixing ~

- **batten spacing** (c/c)
- **38 × 19mm softwood battens nailed or screwed to background at 450mm spacing**
- **9.5mm tapered edge wallboard secured with 30 × 2mm galvanised nails or dry-wall screws at 150mm spacing**

Guide to securing plasterboard to battens:

<table>
<thead>
<tr>
<th>Board thickness (mm)</th>
<th>Board width (mm)</th>
<th>Batten spacing (mm)</th>
<th>Nail or dry-wall screw length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>900</td>
<td>450</td>
<td>30</td>
</tr>
<tr>
<td>9.5</td>
<td>1200</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>12.5</td>
<td>600</td>
<td>600</td>
<td>40</td>
</tr>
<tr>
<td>12.5</td>
<td>900</td>
<td>450</td>
<td>40</td>
</tr>
<tr>
<td>19.0</td>
<td>600</td>
<td>600</td>
<td>60</td>
</tr>
</tbody>
</table>

Horizontal joints are avoided if possible with cross battens only required at the top and bottom to provide rigidity. Board fixing is with galvanised steel taper-head nails of 2mm diameter (2.6mm dia. for 19mm boards) or with dry-wall screws.
Jointing ~ boards should not directly abut, instead a gap of 3 to 5mm should be provided between adjacent boards for plaster filling and joint reinforcement tape. The illustrations show various applications.

NB. Paper jointing tape is generally specified for dry lining tapered edge boards. External corners are reinforced and strengthened with a particular type of tape that has two strips of thin steel attached.
Glazed Wall Tiles ~ internal glazed wall tiles are usually made to the various specifications under BS EN 14411: Ceramic tiles. Definitions, classification, characteristics, evaluation of conformity and marking.

Internal Glazed Wall Tiles ~ the body of the tile can be made from ball-clay, china clay, china stone, flint and limestone. The material is usually mixed with water to the desired consistency, shaped and then fired in a tunnel oven at a high temperature (1150°C) for several days to form the unglazed biscuit tile. The glaze pattern and colour can now be imparted onto the biscuit tile before the final firing process at a temperature slightly lower than that of the first firing (1050°C) for about two days.

Typical Internal Glazed Wall Tiles and Fittings:

Sizes - Modular
100 x 100 x 5mm thick and
200 x 100 x 6.5mm thick.

Non-modular
152 x 152 x 5 to 8mm thick and
108 x 108 x 4 and 6.5mm thick.

Other sizes - 200 x 300, 250 x 330, 250 x 400, 300 x 450, 300 x 600 and 330 x 600mm.

Fittings - wide range available particularly in the non-modular format.
Bedding of Internal Wall Tiles ~ generally glazed internal wall tiles are considered to be inert in the context of moisture and thermal movement, therefore if movement of the applied wall tile finish is to be avoided attention must be given to the background and the method of fixing the tiles.

Backgrounds ~ these are usually of a cement rendered or plastered surface and should be flat, dry, stable, firmly attached to the substrate and sufficiently established for any initial shrinkage to have taken place. The flatness of the background should be not more than 3mm in 2:000 for the thin bedding of tiles and not more than 6mm in 2:000 for thick bedded tiles.

Fixing Wall Tiles ~ two methods are in general use:

1. Thin Bedding ~ lightweight internal glazed wall tiles fixed dry using a recommended adhesive which is applied to the wall in small areas 1m² at a time with a notched trowel, the tile being pressed into the adhesive.

2. Thick Bedding ~ cement mortar within the mix range of 1:3 to 1:4 can be used or a proprietary adhesive, either by buttering the backs of the tiles which are then pressed into position or by rendering the wall surface to a thickness of approximately 10mm and then applying thin bedded tiles to the rendered wall surface within two hours.

Grouting ~ when the wall tiles have set, the joints can be grouted by rubbing into the joints a grout paste either using a sponge or brush. Most grouting materials are based on cement with inert fillers and are used neat.

Typical Example ~

Note: The alternative treatment at edges is application of a radiused profile plastic trimming to standard spacer tiles.
Primary Functions:

1. Provide a level surface with sufficient strength to support the imposed loads of people and furniture.
2. Exclude the passage of water and water vapour to the interior of the building.
3. Provide resistance to unacceptable heat loss through the floor.
4. Provide the correct type of surface to receive the chosen finish.

Types ~

- Solid concrete bed laid over compacted hardcore - see pages 253 and 759
- Insulated screed to provide surface for floor finish
- Low heat loss
- In normal work on normal soils seldom any problems due to bearing capacity of subsoil
- Low maintenance

SOLID FLOOR ON LEVEL SITE

- Solid floor as above
- Original ground level
- If depth of fill exceeds 600 mm a suspended floor could be better due to the long term settlement of fill
- Low heat loss and maintenance

SOLID FLOOR ON SLOPING SITE

- Insulated suspended timber floor - for details see page 760
- Heat loss higher than above types
- Suspended floors have more resilience than solid floors and are therefore less tiring to users
- Maintenance higher than above types

SUSPENDED TIMBER FLOOR
A domestic solid ground floor consists of three components:

1. Hardcore - a suitable filling material to make up the top soil removal and reduced level excavations. It should have a top surface which can be rolled out to ensure that cement grout is not lost from the concrete. It may be necessary to blind the top surface with a layer of sand especially if the damp-proof membrane is to be placed under the concrete bed.

2. Damp-proof Membrane - an impervious layer such as heavy duty polythene sheeting to prevent moisture from passing through the floor to the interior of the building.

3. Concrete Bed - the component providing the solid level surface to which screeds and finishes can be applied.

Typical Details ~

- a damp-proof membrane in this position is easier to incorporate into the floor but gives no protection to the concrete bed against ingress of moisture.

- a damp-proof membrane in this position protects the concrete bed from the ingress of moisture and harmful salts - risk of damage to dpm when concrete is being placed.

NB. a compromise to the above methods is to place the dpm in the middle of the concrete bed but this needs two concrete pouring operations.
Suspended Timber Ground Floors ~ these need to have a well-ventilated space beneath the floor construction to prevent the moisture content of the timber from rising above an unacceptable level (i.e. not more than 20%) which would create the conditions for possible fungal attack.

Typical Details ~

- Air bricks at 2.000% in external walls with slate or similar trunking forming flue
- Joists at 400% fixed clear of external wall
- DPC
- Wall plate
- Sleeper wall in honeycomb bond
- Underfloor space to be clear of debris and cross ventilated
- Insulation
- Well compacted hardcore
- 15 N/mm² (1:3:6) concrete not less than 100 mm thick - top surface to have trowel or spade finish and to be no lower than highest adjoining ground level
- 125 x 50 joists at 400% c/c
- Insulation suspended on nylon netting
- Flooring
- DPC
- Half brick voids
- Sleeper walls at 2.000% c/c
- Elevation of sleeper wall
Precast Concrete Floors ~ these have been successfully adapted from commercial building practice (see pages 789 and 790), as an economic alternative construction technique for suspended timber and solid concrete domestic ground (and upper) floors. See also page 416 for special situations.

Typical Details ~

BEAMS PARALLEL WITH EXTERNAL WALL

- Cavity wall insulated as required
- 18 mm t&g chipboard over vapour control layer
- Cavity tray over vent
- DPC stepped ventilator
- GL
- Organic material stripped; surface treated with weed killer; lower level than adjacent ground if free draining (not Scotland)

POLYPROPYLENE VENTILATOR

- Stepped telescopic sleeve
- Grill clips to sleeve: 1500 mm²/m run of wall OR 500 mm²/m² of floor area (take greater value)

BEAMS BEARING ON EXTERNAL WALL

- Lightweight concrete block, min. 7N/mm²
- Prestressed concrete beam min. 50N/mm²
- Floor finish as above or screeded (reinforce in garage)
- This block to wall strength
- DPC
- Vent
- GL
- If inner ground level is significantly lower, this area to be designed as a retaining wall

TYPICAL BEAM/RIB AND BLOCK DETAIL
Perspective ~

external brick and block cavity wall insulated as required

100 mm lightweight concrete beam
coursing slip

floor finish as required see previous page

under floor ventilator

deep strip foundation

Internal Wall Support to Staggered Beams ~

prestressed concrete beam

100 mm lightweight concrete block

dpc

intermediate support wall
Precast Reinforced Concrete Beam and Expanded Polystyrene (EPS) Block Floors ~ these have evolved from the principles of beam and block floor systems as shown on the preceding page. The lightweight and easy to cut properties of the blocks provide for speed and simplicity in construction. Exceptional thermal insulation is possible, with U-values as low as 0.2 W/m²K.

Typical Detail ~

![Diagram](image)

- Structural screed
- Gas membrane (if required)
- EPS infill block 1200 long, density approx. 17 kg/m³, cut to fit wall at periphery
- Inverted reinforced concrete 'T' beams at 600 c/c
- Heel and toe

Cold Bridging ~ this is prevented by the EPS 'toe' projecting beneath the underside of the concrete beam.

Structural Floor Finish ~ 50 mm structural concrete (C30 grade) screed, reinforced with 10 mm steel Type A square mesh or with polypropylene fibres in the mix. A low-density polyethylene (LDPE) methane/radon gas membrane can be incorporated under the screed if local conditions require it.

Floating Floor Finish ~ subject to the system manufacturer's specification and accreditation, 18 mm flooring grade moisture-resistant chipboard can be used over a 1000 gauge polythene vapour control layer. All four tongued and grooved edges of the chipboard are glued for continuity.
Floor Finishes ~ these are usually applied to a structural base but may form part of the floor structure as in the case of floorboards. Most finishes are chosen to fulfil a particular function such as:

1. Appearance - chosen mainly for their aesthetic appeal or effect but should however have reasonable wearing properties. Examples are carpets, carpet tiles and wood blocks.
2. High Resistance - chosen mainly for their wearing and impact-resistance properties and for high usage areas such as kitchens. Examples are quarry tiles and granolithic pavings.
3. Hygiene - chosen to provide an impervious easy to clean surface with reasonable aesthetic appeal. Examples are quarry tiles and polyvinyl chloride (PVC) sheets and tiles.

Carpets and Carpet Tiles - made from animal hair, mineral fibres and man made fibres such as nylon and acrylic. They are also available in mixtures of the above. A wide range of patterns, sizes and colours are available. Carpets and carpet tiles can be laid loose, stuck with a suitable adhesive or in the case of carpets edge fixed using special grip strips.

PVC Tiles - made from a blended mix of thermoplastic binders; fillers and pigments in a wide variety of colours and patterns to the recommendations of BS EN 649: Resilient floor coverings. PVC tiles are usually 305 × 305 × 1.6 mm thick and are stuck to a suitable base with special adhesives as recommended by the manufacturer.

Quarry Tiles -

![Diagram of Quarry Tiles](image)
Tongue and Groove Boarding ~ prepared from softwoods to the recommendations of BS 1297. Boards are laid at right angles to the joists and are fixed with 2 No. 65 mm long cut floor brads per joists. The ends of board lengths are butt jointed on the centre line of the supporting joist.

Maximum board spans are:
16 mm thick ~ 505 mm
19 mm thick ~ 600 mm
21 mm thick ~ 635 mm
28 mm thick ~ 790 mm

Timber Strip Flooring ~ strip flooring is usually considered to be boards under 100 mm face width. In good class work hardwoods would be specified, the boards being individually laid and secret nailed. Strip flooring can be obtained treated with a spirit-based fungicide. Spacing of supports depends on type of timber used and applied loading. After laying the strip flooring it should be finely sanded and treated with a seal or wax. In common with all timber floorings a narrow perimeter gap should be left for moisture movement.

Chipboard ~ sometimes called Particle Board is made from particles of wood bonded with a synthetic resin and/or other organic binders to the recommendations of BS EN 319.

Standard floorboards are in lengths up to 2400 mm. a width of 600 mm x 18 or 22 mm thickness with tongued and grooved joints to all edges. Laid at right angles to joists with all cross joints directly supported. May be specified as unfinished or water proof quality indicated with a dull green dye.

Wood Blocks ~ prepared from hardwoods and softwoods to the recommendations of BS 1187. Wood blocks can be laid to a variety of patterns, also different timbers can be used to create colour and grain effects. Laid blocks should be finely sanded and sealed or polished.
Large Cast-in-situ Ground Floors — these are floors designed to carry medium to heavy loadings such as those used in factories, warehouses, shops, garages and similar buildings. Their design and construction is similar to that used for small roads (see pages 165 and 166). Floors of this type are usually laid in alternate 4:500 wide strips running the length of the building or in line with the anticipated traffic flow where applicable. Transverse joints will be required to control the tensile stresses due to the thermal movement and contraction of the slab. The spacing of these joints will be determined by the design and the amount of reinforcement used. Such joints can either be formed by using a crack inducer or by sawing a 20 to 25 mm deep groove into the upper surface of the slab within 20 to 30 hours of casting.

Typical Layout ~

Surface Finishing — the surface of the concrete may be finished by power floating or trowelling which is carried out whilst the concrete is still plastic but with sufficient resistance to the weight of machine and operator whose footprint should not leave a depression of more than 3 mm. Power grinding of the surface is an alternative method which is carried out within a few days of the concrete hardening. The wet concrete having been surface finished with a skip float after the initial levelling with a tamping bar has been carried out. Power grinding removes 1 to 2 mm from the surface and is intended to improve surface texture and not to make good deficiencies in levels.
Vacuum Dewatering – if the specification calls for a power float surface finish vacuum dewatering could be used to shorten the time delay between tamping the concrete and power floating the surface. This method is suitable for slabs up to 300 mm thick. The vacuum should be applied for approximately three minutes for every 25 mm depth of concrete which will allow power floating to take place usually within 20 to 30 minutes of the tamping operation. The applied vacuum forces out the surplus water by compressing the slab and this causes a reduction in slab depth of approximately 2%; therefore packing strips should be placed on the side forms before tamping to allow for sufficient surcharge of concrete.

Typical Details –
Concrete Floor Screeds

Concrete Floor Screeds ~ these are used to give a concrete floor a finish suitable to receive the floor finish or covering specified. It should be noted that it is not always necessary or desirable to apply a floor screed to receive a floor covering. Techniques are available to enable the concrete floor surface to be prepared at the time of casting to receive the coverings at a later stage.

Typical Screed Mixes ~

<table>
<thead>
<tr>
<th>Screed Thickness</th>
<th>Cement</th>
<th>Dry Fine Aggregate <5 mm</th>
<th>Coarse Aggregate >5 mm <10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 40 mm</td>
<td>1</td>
<td>3 to 4 1/2</td>
<td>-</td>
</tr>
<tr>
<td>40 to 75 mm</td>
<td>1</td>
<td>3 to 4 1/2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 1/2</td>
<td>3</td>
</tr>
</tbody>
</table>

Laying Floor Screeds ~ floor screeds should not be laid in bays since this can cause curling at the edges. Screeds can however be laid in 3000 wide strips to receive thin coverings. Levelling of screeds is achieved by working to levelled timber screeding batten or alternatively a 75 mm wide band of levelled screed with square edges can be laid to the perimeter of the floor prior to the general screed-laying operation.

Screed Types ~

Monolithic Screeds ~
screed laid directly on concrete floor slab within three hours of placing concrete ~ before any screed is placed all surface water should be removed ~ all screeding work should be carried out from scaffold board runways to avoid walking on the 'green' concrete slab.
Separate Screeds –
screed is laid onto the concrete floor slab after it has cured. The floor surface must be clean and rough enough to ensure an adequate bond unless the floor surface is prepared by applying a suitable bonding agent or by brushing with a cement/water grout of a thick cream-like consistency just before laying the screed.

Unbonded Screeds –
screed is laid directly over a damp-proof membrane or over a damp-proof membrane and insulation. A rigid form of floor insulation is required where the concrete floor slab is in contact with the ground. Care must be taken during this operation to ensure that the damp-proof membrane is not damaged.

Floating Screeds –
a resilient quilt of 25 mm thickness is laid with butt joints and turned up at the edges against the abutment walls, the screed being laid directly over the resilient quilt. The main objective of this form of floor screed is to improve the sound insulation properties of the floor.
Latex ~ a naturally occurring liquid from some plants, notably the rubber tree. Synthetic latexes are now produced from polymers and resins.

Latex Floor Screed ~ a modified screed, originally created by including particles of rubber or bitumen with cement and sand to achieve a hard-wearing, dust-free, impervious and easily maintained floor finish. Suitable in factories and public places such as schools. Contemporary latex screeds can include rubber and bitumen for industrial applications along with granite chippings for increased depth. Most latex screeds now have liquid resin or synthetic polymer additives to modify the cement and sand. These permit spreading in very thin layers and are ideal for levelling uneven and irregular surfaces of sound composition. The ease of use and workability has led to the term 'self-levelling screeds', which is not entirely correct, as they do require physical spreading and trowelling to a finish.

Availability ~ one or two part packs.

Single packs are dry based, premixed materials in 20 or 25 kg bags for the addition of water on site. Application is in 3 to 8 mm thickness. Some single packs are available with granite chippings for applications up to 25 mm in thickness.

Two part packs consist of a cement and sand based powder in 20 or 25 kg bags for use with a 5 kg container of liquid emulsion, usually of styrene-polymer composition. After mixing, up to a 12 mm thickness can be applied and up to 30 mm with a coarse sand aggregate.
Primary Functions:
1. Provide a level surface with sufficient strength to support the imposed loads of people and furniture plus the dead loads of flooring and ceiling.
2. Reduce heat loss from lower floor as required.
3. Provide required degree of sound insulation.
4. Provide required degree of fire resistance.

Basic Construction – a timber suspended upper floor consists of a series of beams or joists supported by load bearing walls sized and spaced to carry all the dead and imposed loads.

Joist Sizing – three methods can be used:
*TRADA publication - Span Tables for Solid Timber Members in Dwellings.

2. Calculation formula:
 \[BM = \frac{fbd^2}{6} \]
 where
 - \(BM \) = bending moment
 - \(f \) = fibre stress
 - \(b \) = breadth
 - \(d \) = depth in mm

3. Empirical formula:
 \[D = \frac{\text{span in mm}}{24} + 50 \]
 where
 - \(D \) = depth of joist in mm
 above assumes that joists have a breadth of 50 mm and are at 400% spacing
Strutting ~ used in timber suspended floors to restrict the movements due to twisting and vibration which could damage ceiling finishes. Strutting should be included if the span of the floor joists exceeds 2.5m and is positioned on the centre line of the span. Max. floor span ~ 6m measured centre to centre of bearing (inner leaf centre line in cavity wall).

Typical Details ~

- **38 x 50 sawn softwood herringbone strutting fixed side by side on centre line of joist span**
- **50mm wide solid timber strutting giving high degree of restraint**
- **Galvanised steel herringbone strutting fixed on centre line of joist span**
Lateral Restraint ~ external, compartment (fire), separating (party) and internal load bearing walls must have horizontal support from adjacent floors, to restrict movement. Exceptions occur when the wall is less than 3m long.

Methods:
1. 90 mm end bearing of floor joists, spaced not more than 1·2m apart - see page 771.
2. Galvanised steel straps spaced at intervals not exceeding 2m and fixed square to joists - see page 771.
3. Joists carried by BS approved galvanised steel hangers.
4. Adjacent floors at or about the same level, contacting with the wall at no more than 2 m intervals.

Ref. BS EN 845-1: Specification for ancillary components for masonry. Wall ties, tension straps, hangers and brackets.
Wall Stability - at right angles to floor and ceiling joists this is achieved by building the joists into masonry support walls or locating them on approved joist hangers.

Walls parallel to joists are stabilised by lateral restraint straps. Buildings constructed before current stability requirements (see Bldg. Regs. A.D: A - Structure) often show signs of wall bulge due to the effects of eccentric loading and years of thermal movement.

Remedial Measures -

Retro-strap
- strap bolted to wall
- 30 x 5 mm galv. m.s. strap
- folding wedges
- solid strutting between joists

Retro-stud
- nut, washer and pattress
- floor decking
- nut and plate washer
- 200 mm dia. m.s. studding

Through tie
- decorative pattress plate, washer and nut to threaded end of m.s. tie
- tie bar through clearance holes in joist centres

Location of straps and ties

Optional fish-tail

Common decorative iron pattress plates and straps
Trimming Members — these are the edge members of an opening in a floor and are the same depth as common joists but are usually 25 mm wider.

Typical Details —
Typical spans and loading for floor joists of general structural (GS) grade:

<table>
<thead>
<tr>
<th>Sawn size (mm × mm)</th>
<th>Maximum clear span (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 × 75</td>
<td>1.22 1.09 0.83 1.14 1.03 0.79 0.98 0.89 0.70</td>
</tr>
<tr>
<td>38 × 100</td>
<td>1.91 1.78 1.38 1.80 1.64 1.28 1.49 1.36 1.09</td>
</tr>
<tr>
<td>38 × 125</td>
<td>2.54 2.45 2.01 2.43 2.30 1.83 2.01 1.85 1.50</td>
</tr>
<tr>
<td>38 × 150</td>
<td>3.05 2.93 2.56 2.91 2.76 2.40 2.50 2.35 1.93</td>
</tr>
<tr>
<td>38 × 175</td>
<td>3.55 3.40 2.96 3.37 3.19 2.77 2.89 2.73 2.36</td>
</tr>
<tr>
<td>38 × 200</td>
<td>4.04 3.85 3.35 3.82 3.61 3.13 3.27 3.09 2.68</td>
</tr>
<tr>
<td>38 × 225</td>
<td>4.53 4.29 3.73 4.25 4.02 3.50 3.65 3.44 2.99</td>
</tr>
<tr>
<td>50 × 75</td>
<td>1.45 1.37 1.08 1.39 1.30 1.01 1.22 1.11 0.88</td>
</tr>
<tr>
<td>50 × 100</td>
<td>2.18 2.06 1.76 2.06 1.95 1.62 1.82 1.67 1.35</td>
</tr>
<tr>
<td>50 × 125</td>
<td>2.79 2.68 2.44 2.67 2.65 2.28 2.40 2.24 1.84</td>
</tr>
<tr>
<td>50 × 150</td>
<td>3.33 3.21 2.92 3.19 3.07 2.75 2.86 2.70 2.33</td>
</tr>
<tr>
<td>50 × 175</td>
<td>3.88 3.73 3.38 3.71 3.57 3.17 3.30 3.12 2.71</td>
</tr>
<tr>
<td>50 × 200</td>
<td>4.42 4.25 3.82 4.23 4.07 3.58 3.74 3.53 3.07</td>
</tr>
<tr>
<td>50 × 225</td>
<td>4.88 4.74 4.26 4.72 4.57 3.99 4.16 3.94 3.42</td>
</tr>
<tr>
<td>63 × 100</td>
<td>2.41 2.29 2.01 2.28 2.17 1.90 2.01 1.91 1.60</td>
</tr>
<tr>
<td>63 × 125</td>
<td>3.00 2.89 2.63 2.88 2.77 2.52 2.59 2.49 2.16</td>
</tr>
<tr>
<td>63 × 150</td>
<td>3.59 3.46 3.15 3.44 3.31 3.01 3.10 2.98 2.63</td>
</tr>
<tr>
<td>63 × 175</td>
<td>4.17 4.02 3.66 4.00 3.85 3.51 3.61 3.47 3.03</td>
</tr>
<tr>
<td>63 × 200</td>
<td>4.73 4.58 4.18 4.56 4.39 4.00 4.11 3.95 3.43</td>
</tr>
<tr>
<td>63 × 225</td>
<td>5.15 5.01 4.68 4.99 4.85 4.46 4.62 4.40 3.83</td>
</tr>
<tr>
<td>75 × 125</td>
<td>3.18 3.06 2.79 3.04 2.93 2.67 2.74 2.64 2.40</td>
</tr>
<tr>
<td>75 × 150</td>
<td>3.79 3.66 3.33 3.64 3.50 3.19 3.28 3.16 2.86</td>
</tr>
<tr>
<td>75 × 175</td>
<td>4.41 4.25 3.88 4.23 4.07 3.71 3.82 3.68 3.30</td>
</tr>
<tr>
<td>75 × 200</td>
<td>4.92 4.79 4.42 4.77 4.64 4.23 4.35 4.19 3.74</td>
</tr>
<tr>
<td>75 × 225</td>
<td>5.36 5.22 4.88 5.20 5.06 4.72 4.82 4.69 4.16</td>
</tr>
</tbody>
</table>

Notes:
1. Where a bath is supported, the joists should be duplicated.
2. See pages 38 and 39 for material dead weights.
3. See pages 141 and 142 for softwood classification and grades.
Joist and Beam Sizing — design tables and formulae have limitations, therefore where loading, span and/or conventional joist spacings are exceeded, calculations are required. BS EN 1995-1-1: Design of timber structures and BS EN 338: Structural timber — strength classes are both useful resource material for detailed information on a variety of timber species. The following example serves to provide guidance on the design process for determining joist size, measurement of deflection, safe bearing and resistance to shear force:

Total load (W) per joist = $5 \text{ m} \times 0.4 \text{ m} \times 2.25 \text{ kN/m}^2 = 4.5 \text{ kN}$

or: $\frac{4.5 \text{ kN}}{5 \text{ m span}} = 0.9 \text{ kN/m}$

Resistance to bending —

Bending moment formulae are shown on pages 640 and 643

$$BM = \frac{WL}{8} = \frac{fbd^2}{6}$$

Where: $W = \text{total load}, 4.5 \text{ kN (4500 N)}$

$L = \text{span}, 5 \text{ m (5000 mm)}$

$f = \text{fibre stress of timber}, 7.5 \text{ N/mm}^2$

$b = \text{breadth of joist}, \text{try } 50 \text{ mm}$

$d = \text{depth of joist}, \text{unknown}$

Transposing:

$$\frac{WL}{8} = \frac{fbd^2}{6}$$

Becomes:

$$d = \sqrt{\frac{6WL}{8fb}} = \sqrt{\frac{6 \times 4500 \times 5000}{8 \times 7.5 \times 50}} = 212 \text{ mm}$$

Nearest commercial size: $50 \text{ mm } \times 225 \text{ mm}$
Joist and Beam Sizing — calculating overall dimensions alone is insufficient. Checks should also be made to satisfy: resistance to deflection, adequate safe bearing and resistance to shear.

Deflection — should be minimal to prevent damage to plastered ceilings. An allowance of up to 0.003 x span is normally acceptable; for the preceding example this will be:

\[0.003 \times 5000 \text{ mm} = 15 \text{ mm} \]

The formula for calculating deflection due to a uniformly distributed load (see pages 642 and 643) is:

\[
\frac{5WL^3}{384EI} \quad \text{where} \quad l = \frac{bd^3}{12}
\]

\[l = \frac{50 \times (225)^3}{12} = 4.75 \times (10^7) \]

So, deflection = \[
\frac{5 \times 4500 \times (5000)^3}{384 \times 10800 \times 4.75 \times (10^7)} = 14.27 \text{ mm}
\]

NB. This is only just within the calculated allowance of 15 mm, therefore it would be prudent to specify slightly wider or deeper joists to allow for unknown future use.

Safe Bearing —

\[\frac{\text{load at the joist end, } W/2}{\text{compression perpendicular to grain} \times \text{breadth}} \]

\[= \frac{4500/2}{2.4 \times 50} = 19 \text{ mm.} \]

Therefore full support from masonry (90 mm min.) or joist hangers will be more than adequate.

Shear Strength —

\[
V = \frac{2bdv}{3}
\]

where: \(V = \) vertical loading at the joist end, \(W/2 \)

\(v = \) shear strength parallel to the grain, 0.71 N/mm²

Transposing:-

\[bd = \frac{3V}{2v} = \frac{3 \times 2250}{2 \times 0.71} = 4753 \text{ mm}^2 \text{ minimum} \]

Actual \(bd = 50 \text{ mm} \times 225 \text{ mm} = 11250 \text{ mm}^2 \)

Resistance to shear is satisfied as actual is well above the minimum.
Typical Situations ~

It is necessary to ensure enough timber above and/or below a notch to resist horizontal shear or shear parallel to the grain. To check whether a joist or beam has adequate horizontal shear strength:

\[v = \frac{(V_3 d)}{(2bh^2)} \]

Using the data provided in the previous two pages as applied to the design of a timber joist of 225 × 50mm cross section, in this instance with a 50mm notch to leave 175mm (h) clear:

\[v = \frac{(2250 \times 3 \times 225)}{(2 \times 50 \times 175 \times 175)} = 0.496 \text{N/mm}^2 \]

Shear strength parallel to the grain* is given as 0.710N/mm² so sufficient strength is still provided.

*see page 142.

Bressummer (or breastsummer) beam ~

A long, large section timber beam carrying joists directly or notched and housed (as shown). A dated form of construction for supporting a masonry wall and floor/ceiling joists in large openings. Often found during refurbishment work over shop windows. Steel or reinforced concrete now preferred.
Pipes and cables should be routed discretely and out of sight, but accessible for maintenance and repair. Where timber joists are used, services running parallel can be conveniently attached to the sides. At right angles the timber will need to be holed or notched.

Holing suitable for flexible cables and coiled soft copper micro-bore tubing. The preferred location in simply supported end-bearing floor joists is in the neutral axis. This is where compressive and tensile load distribution neutralises at the centre and where the material gets neither longer nor shorter when deflected.

Joist under load

areas of max. shear to be avoided

compression

tension

tension

area of max. compression and bending to be avoided

Load variation

max. compression

neutral axis where opposing forces are zero, the position at which there is zero stress and strain*

max. tension

*stress is represented by: loading ÷ cross sectional area
strain is represented by: extension ÷ original length

NB. The relationship between stress and strain is most obvious with metals and plastics. When these are deformed by an applied force they return to their original size and shape after the force is removed. The two physical states of stress and strain are proportional within the elastic state just described. This is known as Hooke’s Law and is described by the term elasticity measured in units of N/mm². Examples for softwood timber are given on page 142.
Hole limitations ~
Diameter maximum: 0.25 x joist depth.
Spacing minimum: 3 x diameter apart, measured centre to centre.
Position in the neutral axis: between 0.25 and 0.40 x clear span, measured from the support.

![Diagram showing hole limitations]

Notching ~ the only practical way of accommodating rigid pipes and conduits in joisted floors.
Depth maximum: 0.125 x joist depth.
Position between: 0.07 and 0.25 x clear span measured from the support.

![Diagram showing notching]

Notching of a joist reduces the effective depth, thereby weakening the joist and reducing its design strength. To allow for this, joists should be oversized.
For fire protection, floors are categorised depending on their height relative to adjacent ground —

<table>
<thead>
<tr>
<th>Height of top floor above ground</th>
<th>Fire resistance (load bearing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 5 m</td>
<td>30 minutes</td>
</tr>
<tr>
<td>More than 5 m</td>
<td>60 minutes (30 min. for a three-storey dwelling)</td>
</tr>
</tbody>
</table>

Tests for fire resistance relate to load bearing capacity, integrity and insulation as determined by BS 476 - 21: Fire tests on building materials and structures. Methods for determination of the fire resistance of load bearing elements of construction.

Integrity ~ the ability of an element to resist fire penetration.

Insulation ~ ability to resist heat penetration so that fire is not spread by radiation and conduction.

Typical applications ~

30-MINUTE FIRE RESISTANCE

21mm t & g wood board flooring

38 mm timber joists with noggins or struts to support board edges

40 mm galv. steel clout nails at 150 mm spacing

12.5 mm plasterboard. joints taped, filled and plaster skimmed

600 mm max. spacing

60-MINUTE FIRE RESISTANCE

21mm t & g wood board flooring

50 mm timber joists with noggins or struts to support board edges

60 mm galv. steel clout nails at 150 mm spacing

two layers of 15 mm plasterboard independently nailed with joints taped, filled and plaster skimmed

600 mm max. spacing
Modified 30-minute fire resistance ~ a lower specification than the full 30-minute fire resistance shown on the preceding page. This is acceptable in certain situations such as some loft conversion floors in existing dwellings and in new-build dwellings of limited height. These situations are defined in Section 4.7 and Appendix A, Table A1 of Approved Document B1 to the Building Regulations.

Load bearing resistance to collapse ~ 30 minutes minimum.
Integrity ~ 15 minutes minimum.
Insulation ~ 15 minutes minimum.

MODIFIED 30-MINUTE FIRE RESISTANCE

Established floor construction ~ modified 30 minute fire resistant floor construction is often found during refurbishment of housing constructed during the latter part of the 20th century. Here, 9.5 mm plasterboard lath (rounded edge board 1200 mm long x 406 mm wide ~ now obsolete) was used with floor joists at 400 mm spacing. It is now the general practice to use a 12.5 mm plasterboard ceiling lining to dwelling house floors as this not only provides better fire resistance, but is more stable.

Note 1: Full 30-minute fire resistance must be used for floors over basements or garages.

Note 2: Where a floor provides support or stability to a wall or vice versa, the fire resistance of the supporting element must not be less than the fire resistance of the other element.

Ref. Building Regulations, AD B Fire safety, Volume 1 - Dwelling houses.
Reinforced Concrete Suspended Floors — a simple reinforced concrete flat slab cast to act as a suspended floor is not usually economical for spans over 5,000. To overcome this problem beams can be incorporated into the design to span in one or two directions. Such beams usually span between columns which transfers their loads to the foundations. The disadvantages of introducing beams are the greater overall depth of the floor construction and the increased complexity of the formwork and reinforcement. To reduce the overall depth of the floor construction flat slabs can be used where the beam is incorporated with the depth of the slab. This method usually results in a deeper slab with complex reinforcement especially at the column positions.

Typical Examples: S

- ONE WAY SPANNING SLAB
 - S = span - economic range 2.400 - 7.500
 - 150 to 350
- TWO WAY SPANNING SLAB
 - S = span - economic range 4.000 to 8.000
 - 150 to 300
- TWO WAY SPANNING FLAT SLAB
 - 225 to 400
 - Economic span range - centre to centre of beam strips - 6.000 to 9.000
 - Strip of slab acting as a wide flat beam
Ribbed Floors ~ to reduce the overall depth of a traditional cast in-situ reinforced concrete beam and slab suspended floor a ribbed floor could be used. The basic concept is to replace the wide spaced deep beams with narrow spaced shallow beams or ribs which will carry only a small amount of slab loading. These floors can be designed as one or two way spanning floors. One way spanning ribbed floors are sometimes called troughed floors whereas the two way spanning ribbed floors are called coffered or waffle floors. Ribbed floors are usually cast against metal, glass-fibre or polypropylene preformed moulds which are temporarily supported on plywood decking, joists and props – see page 594.

Typical Examples ~

ONE WAY SPANNING RIBBED OR TROUCHED FLOOR

TWO WAY SPANNING COFFERED OR WAFFLE FLOOR
Ribbed Floors—these have greater span and load potential per unit weight than flat slab construction. This benefits a considerable reduction in dead load, to provide cost economies in other superstructural elements and foundations. The regular pattern of voids created with waffle moulds produces a honeycombed effect, which may be left exposed in utility buildings such as car parks. Elsewhere, such as shopping malls, a suspended ceiling would be appropriate. The trough finish is also suitable in various situations and has the advantage of creating a continuous void for accommodation of service cables and pipes. A suspended ceiling can add to this space where air conditioning ducting is required, also providing several options for finishing effect.

Typical mould profile —

NB. After removing the temporary support structure, moulds are struck by flexing with a flat tool. A compressed air line is also effective.
Hollow Pot Floors ~ these are in essence a ribbed floor with permanent formwork in the form of hollow clay or concrete pots. The main advantage of this type of cast in-situ floor is that it has a flat soffit which is suitable for the direct application of a plaster finish or an attached dry lining. The voids in the pots can be utilised to house small diameter services within the overall depth of the slab. These floors can be designed as one or two way spanning slabs, the common format being the one way spanning floor.

Typical Example ~

![Diagram of Hollow Pot Floor](image-url)
Soffit and Beam Fixings — concrete suspended floors can be designed to carry loads other than the direct upper surface loadings. Services can be housed within the voids created by the beams or ribs and suspended or attached ceilings can be supported by the floor. Services which run at right angles to the beams or ribs are usually housed in cast-in holes. There are many types of fixings available for use in conjunction with floor slabs. Some are designed to be cast-in whilst others are fitted after the concrete has cured. All fixings must be positioned and installed so that they are not detrimental to the structural integrity of the floor.

Typical Examples —
Precast Concrete Floors ~ these are available in several basic formats and provide an alternative form of floor construction to suspended timber floors and in-situ reinforced concrete suspended floors. The main advantages of precast concrete floors are:

1. Elimination of the need for formwork except for nominal propping which is required with some systems.
2. Curing time of concrete is eliminated, therefore the floor is available for use as a working platform at an earlier stage.
3. Superior quality control of product is possible with factory-produced components.

The main disadvantages of precast concrete floors when compared with in-situ reinforced concrete floors are:

1. Less flexible in design terms.
2. Formation of large openings in the floor for ducts, shafts and stairwells usually have to be formed by casting an in-situ reinforced concrete floor strip around the opening position.
3. Higher degree of site accuracy is required to ensure that the precast concrete floor units can be accommodated without any alterations or making good.

Typical Basic Formats ~

![Diagram of precast concrete floor with grouted joints, welded fabric reinforcement, and ceiling finish. The diagram shows spans of 600mm, 400-1200mm, and 100-200mm.](image)
Precast Concrete Floors

Typical Basic Formats:

- **Precast Concrete Floors**

1. **Precast Concrete Floors**
 - Structural concrete topping
 - Prestressed or precast concrete inverted T beams
 - PCC BEAM AND POT COMPOSITE FLOOR - max span 7.500

2. **PCC Plank and Pot Composite Floor**
 - Structural concrete topping
 - Prestressed pcc planks with lattice reinforcement
 - PCC PLANK AND POT COMPOSITE FLOOR - max span 12.000

3. **PCC Cored Units**
 - Dry cast precast concrete cored units
 - PCC CORED UNITS - max. span 10.000

4. **PCC Channel Units**
 - Precast concrete channel units
 - Attached ceiling if required
 - PCC CHANNEL UNITS - max. span 6.750
Precast Concrete Floors

Bearing Considerations ~

STEEL SUPPORT CONCRETE SUPPORT MASONRY SUPPORT
NB. spalling to end of pcc unit and/or edge of support will reduce effective bearing length.

Lateral Restraint and Structural Continuity Considerations ~

Opening Considerations ~

large opening formed in cast in-situ concrete panel or strip

small opening formed in body of pcc unit

2.5 cm nominal pitch

pcc floor units

RC floor strip and beams

791
Steel fabricated beams can be used as an integral means of support for precast concrete floors. These are an overall depth and space-saving alternative compared to down-stand reinforced concrete beams or masonry walls. Only the lower steel flange of the steel beam is exposed.

To attain sufficient strength, a supplementary steel plate is welded to the bottom flange of standard UC sections. This produces a type of compound or plated section that is supported by the main structural frame.

Floor support

Plated section

Note: For fillet weld details and other welding applications, see page 636.
A standard manufactured steel beam with similar applications to the plated UC shown on the previous page. This purpose-made alternative is used with lightweight flooring units, such as precast concrete hollow core slabs and metal section decking of the type shown on page 595.

Standard production serial size range ~

<table>
<thead>
<tr>
<th>Size Range</th>
<th>280 ASB</th>
<th>300 ASB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>175-190</td>
<td>190-203</td>
</tr>
<tr>
<td>Width</td>
<td>272-288</td>
<td>310-342</td>
</tr>
<tr>
<td>Height</td>
<td>285-300</td>
<td>300-313</td>
</tr>
</tbody>
</table>

Dimensions in mm

Application ~

- mesh reinforced concrete topping
- steel trough decking as permanent formwork
- expanded metal spot welded to beam to enhance concrete bond
- asymmetric rolled steel beam
- stop plate
Raised Flooring — developed in response to the high-tech boom of the 1970s. It has proved expedient in accommodating computer and communications cabling as well as numerous other established services. The system is a combination of adjustable floor pedestals, supporting a variety of decking materials. Pedestal height ranges from as little as 30 mm up to about 600 mm, although greater heights are possible at the expense of structural floor levels. Decking is usually in loose fit squares of 600 mm, but may be sheet plywood or particleboard screwed direct to closer spaced pedestal support plates on to joists bearing on pedestals.

Cavity fire stops are required between decking and structural floor at appropriate intervals (see Building Regulations, A D B, Volume 2, Section 9).

Application —

Raised Access Floors
Sound Insulation — sound can be defined as vibrations of air which are registered by the human ear. All sounds are produced by a vibrating object which causes tiny particles of air around it to move in unison. These displaced air particles collide with adjacent air particles setting them in motion and in unison with the vibrating object. This continuous chain reaction creates a sound-wave which travels through the air until at some distance the air particle movement is so small that it is inaudible to the human ear. Sounds are defined as either impact or airborne sound, the definition being determined by the source producing the sound. Impact sounds are created when the fabric of structure is vibrated by direct contact whereas airborne sound only sets the structural fabric vibrating in unison when the emitted sound-wave reaches the enclosing structural fabric. The vibrations set up by the structural fabric can therefore transmit the sound to adjacent rooms which can cause annoyance, disturbance of sleep and of the ability to hold a normal conversation. The objective of sound insulation is to reduce transmitted sound to an acceptable level, the intensity of which is measured in units of decibels (dB).

The Building Regulations, Approved Document E: Resistance to the passage of sound, establishes sound insulation standards as follows:

- **E1:** Between dwellings and between dwellings and other buildings.
- **E2:** Within a dwelling, i.e. between rooms, particularly WCs and habitable rooms, and bedrooms and other rooms.
- **E3:** Control of reverberation noise in common parts (stairwells and corridors) of buildings containing dwellings, i.e. flats.
- **E4:** Specific applications to acoustic conditions in schools.

Note: E1 includes hotels, hostels, student accommodation, nurses’ homes and homes for the elderly, but not hospitals and prisons.

Typical Sources and Transmission of Sound ~

![Diagram showing sound reduction through different materials:]
- Sound reduction through:
 - Closed single glazed window: 20 to 25 dB
 - Double glazed window: 42 to 45 dB
 - Cavity wall: 45 to 50 dB
 - Tiled roof: 35 dB
The Approved Document to Building Regulation E2 provides for internal walls and floors located between a bedroom or a room containing a WC and other rooms to have a reasonable resistance to airborne sound. Impact sound can be improved by provision of a carpet.

Typical Details ~

75mm min. timber frame
45mm min. metal frame

2 layers of 12.5mm plasterboard each side,
min. mass 10kg/m² each sheet

1 layer of plasterboard as adjacent detail
25mm min. mineral wool
min. density 10kg/m³

CONCRETE BLOCKWORK PARTITION

SUSPENDED CONCRETE FLOORS (See page 790)
Cored plank ~ min. mass 180 kg/m² with any top surface and ceiling finish.
Precast beam and filler block (pot) ~ min. mass 220 kg/m² with 40mm bonded screed and 12.5mm plasterboard ceiling on battens.
Separating Walls – types:
1. Solid masonry
2. Cavity masonry
3. Masonry between isolating panels
4. Timber frame

Type 1 – relies on mass

<table>
<thead>
<tr>
<th>Material A</th>
<th>Density of A (kg/m³)</th>
<th>Finish B</th>
<th>Combined mass A + B (kg/m²)</th>
<th>Thickness C [mm]</th>
<th>Coursing D [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brickwork</td>
<td>1610</td>
<td>13 mm lwt. pl.</td>
<td>375</td>
<td>215</td>
<td>75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>12.5 mm pl. brd.</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Concrete block</td>
<td>1840</td>
<td>13 mm lwt. pl.</td>
<td>415</td>
<td>...</td>
<td>110</td>
</tr>
<tr>
<td>...</td>
<td>1840</td>
<td>12.5 mm pl. brd</td>
<td>...</td>
<td>...</td>
<td>150</td>
</tr>
<tr>
<td>In-situ concrete</td>
<td>2200</td>
<td>Optional</td>
<td>415</td>
<td>190</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Type 2 – relies on mass and isolation

<table>
<thead>
<tr>
<th>Material A</th>
<th>Density of A (kg/m³)</th>
<th>Finish B</th>
<th>Mass A + B (kg/m²)</th>
<th>Thickness C [mm]</th>
<th>Coursing D [mm]</th>
<th>Cavity E [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bkwk.</td>
<td>1970</td>
<td>13 mm lwt. pl.</td>
<td>415</td>
<td>102</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Concrete block</td>
<td>1990</td>
<td>..</td>
<td>..</td>
<td>100</td>
<td>225</td>
<td>..</td>
</tr>
<tr>
<td>Lwt. conc. block</td>
<td>1375</td>
<td>or 12.5 mm pl. brd.</td>
<td>300</td>
<td>100</td>
<td>225</td>
<td>75</td>
</tr>
</tbody>
</table>
Type 3 - relies on: (a) core material type and mass, (b) isolation, and (c) mass of isolated panels.

Panel materials - B:
(a) Plasterboard with cellular core plus plaster finish, mass 18 kg/m². All joints taped. Fixed floor and ceiling only.
(b) 2 No. plasterboard sheets, 12.5 mm each, with joints staggered. Frame support or 30 mm overall thickness.

Type 4 - relies on mass, frame separation and absorption of sound.

Absorbent material - quilting of unfaced mineral fibre batts with a minimum density of 10 kg/m³, located in the cavity or frames.
Separating Floors - types:
1. Concrete with soft covering
2. Concrete with floating layer
3. Timber with floating layer (see next page)

Type 1. Airborne resistance depends on mass of concrete and ceiling.
Impact resistance depends on softness of covering.
- Concrete: 4.5mm uncompressed soft covering
- Screed: Cast in-situ or precast concrete floor of mass including screed of 365kg/m², p.c.c. floor must have plasterboard fixed with resilient metal bars, and the void filled with mineral wool - 10kg/m²
- Cast in-situ or precast concrete floor of mass including screed of 365kg/m², p.c.c. floor must have plasterboard fixed with resilient metal bars, and the void filled with mineral wool - 10kg/m²

Resilient layers:
(a) 25 mm paper faced mineral fibre, density 36kg/m³.
 Timber floor - paper faced underside.
 Screeded floor - paper faced upper side to prevent screed from entering layer.
(b) Screeded floor only:
 13 mm pre-compressed expanded polystyrene (EPS) board, or 5 mm extruded polyethylene foam of density 30-45 kg/m³, laid over a levelling screed for protection.

Type 3. Airborne resistance varies depending on floor construction, absorbency of materials, extent of pugging and partly on the floating layer. Impact resistance depends mainly on the resilient layer separating floating from structure.

Platform Floor ~

Floating layer: 18 mm timber or wood-based board, t & g joints glued and spot bonded to a sub-strate of 19 mm plasterboard. Alternative sub-strate of cement bonded particle board in two 12 mm thicknesses, joints staggered, glued and screwed together.

Resilient layer: 25 mm mineral fibre, density 60-100 kg/m³.

Base: 12 mm timber boarding or wood-based board nailed to joists.

Absorbent material: 100 mm mineral fibre of minimum density 10 kg/m³.

Ceiling: 30 mm plasterboard in two layers, joints staggered.

Ribbed or battened floor ~

Floating layer and 19 mm plasterboard on 45 x 45 mm battens

25 mm mineral fibre strip, density 80-140 kg/m³

100 mm mineral fibre quilt, density 10 kg/m³

30 mm plasterboard ceiling

NB. Minimum mass per unit area = 25kg/m².

NB. See next page for other examples of ribbed floors.
Type 3 (continued).

Alternative ribbed or battened floor ~

![Diagram of ribbed or battened floor]

Ribbed or battened floor with dry sand pugging ~

Example 1

![Diagram of ribbed or battened floor with dry sand pugging]

Example 2

Alternative to Example 1

![Diagram of alternative to Example 1]

NB. Plasterboard in two layers, joints staggered.

OSB = Oriented strand board.
The intensity of unwanted sound that increases vibration of a separating wall or floor can be reduced to some extent by attaching a lining to the existing structure. Plasterboard or other dense material is suitable, but this will have only a limited effect as the lining will also vibrate and radiate sound. The most effective solution is to create another wall or ceiling next to the original, but separated from it.

Separating wall ~

Separating floor ~

BRE Digest 293: Improving the sound insulation of separating walls and floors.
Primary Functions ~
1. Provide a means of circulation between floor levels.
2. Establish a safe means of travel between floor levels.
3. Provide an easy means of travel between floor levels.
4. Provide a means of conveying fittings and furniture between floor levels.

Constituent Parts ~
- upper newel post - notched over joist
- handrail - spans between newel posts
- wall string - fixed to wall
- bottom newel post - rests on floor
- tread - spans between strings
- riser - infill between treads
- apron lining
- balusters forming infill between string and handrail
- outer string - spans between newel posts
- string capping - provides seating for balusters

STRAIGHT FLIGHT STAIRS
All dimensions quoted are the minimum required for domestic stairs exclusive to one dwelling as given in Approved Document K unless stated otherwise.

Terminology:

- **going**
- **nosing**
- **riser**
- **tread**

aggregate of going + twice rise of a step to be 550 min. and 700 max.

handrail - must provide adequate support and is required where total rise exceeds 600mm and to both sides if width exceeds 1000mm

minimum headroom 2000mm

rise height
- min. going 220mm
- max. 220mm

recommended floor height
- 1100mm preferred
- 900mm min.

to floor height 2600

no openings which will allow a 100mm sphere to pass through

max. pitch 42°

*A.D. K does not give a minimum dimension for stair width. See also page 808.
Straight Flight Timber Stair Details

Step Formats ~

- square nosing
- splayed nosing
- rounded nosing

- butt joint
- rebate joint
- housing joint

NB. nosing types and joints are interchangeable between step formats.

String position

25 to 38 mm thick treads

Glued triangulated brackets on centre line of stairs

15 mm deep housings

Glued wedges

12 to 20 mm thick risers

25 to 38 mm thick string

STAIR FLIGHT CONSTRUCTION
Projecting bottom steps are usually included to enable the outer string to be securely jointed to the back face of the newel post and to provide an easy line of travel when ascending or descending at the foot of the stairs.

Typical detail at bottom newel post.
Timber Open Riser Stairs ~ these are timber stairs constructed to the same basic principles as standard timber stairs excluding the use of a riser. They have no real advantage over traditional stairs except for the generally accepted aesthetic appeal of elegance. Like the traditional timber stairs they must comply with the minimum requirements set out in Part K of the Building Regulations.

Typical Requirements for Stairs in a Small Residential Building ~

Recommended clear width for all stairs is 800mm minimum, but 900 mm wall to wall or wall to centre of handrail is preferable. Clear width is defined in BS 585-1 as 'unobstructed width between handrail and face of newel'; but see also page 804. A reduced clear width of 600mm is acceptable for access to limited use space such as a loft.
Design and Construction — because of the legal requirement of not having a gap between any two consecutive treads through which a 100 mm diameter sphere can pass and the limitation relating to the going and rise, as shown on the previous page, it is generally not practicable to have a completely riserless stair for residential buildings since by using minimum dimensions a very low pitch of approximately $27\frac{1}{2}^\circ$ would result and by choosing an acceptable pitch a very thick tread would have to be used to restrict the gap to 100 mm.

Possible Solutions —

![Diagram of Timber Open Riser Stairs]

- pendant newel post notched over landing trimmer
- balusters
- no openings which allow a 100 mm diameter sphere to pass through
- outer string capping
- pitch line
- tread
- wall string
- upper floor landing
- outer string
- Solution No. 1 — nosing batten
- Solution No. 2 — tread batten
- Solution No. 3 — intermediate batten
- minimum overlap 16 mm
- treads and battens housed and fixed into strings
Alternating Tread Stairs

Application – a straight flight for access to a domestic loft conversion only. This can provide one habitable room, plus a bathroom or WC. The WC must not be the only WC in the dwelling.

Practical Issues – an economic use of space, achieved by a very steep pitch of about 60° and opposing overlapping treads.

Safety – pitch and tread profile differ considerably from other stairs, but they are acceptable to Building Regulations by virtue of 'familiarity and regular use' by the building occupants.

Additional features are:
* a non-slip tread surface.
* handrails to both sides.
* minimum going 220 mm.
* maximum rise 220 mm.
* (2 + rise) + (going) between 550 and 700 mm.
* a stair used by children under 5 years old must have the tread voids barred to leave a gap not greater than 100 mm.

Timber Stairs ~ these must comply with the minimum requirements set out in Part K of the Building Regulations. Straight flight stairs are simple, easy to construct and install but by the introduction of intermediate landings stairs can be designed to change direction of travel and be more compact in plan than the straight flight stairs.

Landings ~ these are designed and constructed in the same manner as timber upper floors but due to the shorter spans they require smaller joist sections. Landings can be detailed for a 90° change of direction (quarter space landing) or a 180° change of direction (half space landing) and can be introduced at any position between the two floors being served by the stairs.

Typical Layouts ~
Timber Stairs with Landings

- Half-pendant newel post fixed to wall to receive upper floor landing handrail
- Pendant newel post notched over trimmer joist
- Handrail and balusters
- Half space landing
- Skirting
- Upper floor
- Rebated nosing
- Wall string of lower flight
- Riser
- Tread
- String capping
- Storey-height newel post
- Handrail of lower flight abuts to the underside of outer string of upper string
- Bottom newel post
- Splayed bottom step

Typical Dog Leg or String over String Stairs
For domestic situations a spiral stair of 800mm clear width can provide an alternative compact, space-saving means of access to the upper floor of a private dwelling. With a clear width of only 600mm this type of stair may also be used to access the space available in a roof void. Approved Document K to the Building Regulations refers the design and application of spiral stairs to guidance in BS 5395-2, as summarised on pages 831 and 832.

Typical timber spiral stair components

NB. Clear width is measured between handrails or between central column and handrail. If strings are used, measurement is to or between strings. Take greater value.
In-situ Reinforced Concrete Stairs ~ a variety of stair types and arrangements are possible each having its own appearance and design characteristics. In all cases these stairs must comply with the minimum requirements set out in Part K of the Building Regulations in accordance with the purpose group of the building in which the stairs are situated.

Typical Examples ~

INCLINED SLAB STAIR
landings span from well edge to load bearing wall
stair flights span from floor to landing and from landing to floor
for detailed example see page 817

CRANKED SLAB STAIR
Stair flights span as a cranked slab from floor to landing edge beam and from landing edge beam to floor
If no structural support is given at landing levels stairs are called a continuous slab or scissor stair
Typical Examples -

STRING BEAM STAIR
- Landings span from well edge beam to load bearing wall
- String beams span from floor to landing and from landing to floor
- Stair flights span from string beam to load bearing wall or from string beam to string beam

CANTILEVER STAIR
- Landings cantilever on both sides of a stub beam which is a cantilever beam out of the rear edge of the spine wall
- Stair flights are cantilever flights about the spine wall
Spiral and Helical Stairs — these stairs constructed in in-situ reinforced concrete are considered to be aesthetically pleasing but are expensive to construct. They are therefore mainly confined to prestige buildings usually as accommodation stairs linking floors within the same compartment. Like all other forms of stair they must conform to the requirements of Part K of the Building Regulations and if used as a means of escape in case of fire with the requirements of Part B. Spiral stairs can be defined as those describing a helix around a central column whereas a helical stair has an open well. The open well of a helical stair is usually circular or elliptical in plan and the formwork is built up around a vertical timber core.

Typical Example of a Helical Stair —
NB. in plan the risers in the upper flight are not in line with those in the lower flight. This is to ensure that the soffits of the two flights line through at their intersection with the soffit of the half space landing.

For dimensional limitations see page 827.

Stair width subject to AD B: Fire safety, and AD M: Access to and use of buildings. Width measured as clear distance between walls or balustrade. Ignore string and handrail if projecting <100 mm (AD B. Volume 2).
In-situ Reinforced Concrete Stair Formwork — in specific detail the formwork will vary for the different types of reinforced concrete stair but the basic principles for each format will remain constant.

Typical RC Stair Formwork Details — [see previous page for Key Plan]
Precast Concrete Stairs ~ these can be produced to most of the formats used for in-situ concrete stairs and like those must comply with the appropriate requirements set out in Part K of the Building Regulations. To be economical the total production run must be sufficient to justify the costs of the moulds and therefore the designer’s choice may be limited to the stair types which are produced as a manufacturer’s standard item.

Precast concrete stairs can have the following advantages:

1. Good quality control of finished product.
2. Saving in site space since formwork fabrication and storage will not be required.
3. The stairs can be installed at any time after the floors have been completed, thus giving full utilisation to the stair shaft as a lifting or hoisting space if required.
4. Hoisting, positioning and fixing can usually be carried out by semi-skilled labour.

Typical Example ~ Straight Flight Stairs

![Diagram of precast concrete stairs]

- Return flight
- Tread or going
- Rise
- In-situ RC landing or floor
- Precast concrete stair
- 10 mm wide joint with flexible filler
- Main bars
- Distribution bars
- 100 mm long bearing nib
- In-situ landing or floor
- Floor junction detail
Precast Concrete Stairs

Typical Example ~ Cranked Slab Stairs

- upper return flight
- tread or going
- rise
- in-situ RC floor with rebated edge beam
- precast concrete stair flight and landings
- lower return flight
- in-situ landing edge support beam
- 10mm wide joint with flexible filler
- main bars
- 100mm wide rebated bearing with packing if required
- distribution bars

LANDING SUPPORT DETAIL
Typical Example ~ Spine Beam Stairs with Open Risers

- Double cantilever treads of precast concrete or a suitable hardwood timber.
- Ends of spine beams housed in pockets cast into face of floor or landing beams.
- Return flight.
- Double cantilever precast concrete tread bolted to precast concrete spine with 2 No. fixing bolts.
- Fixing bolts cast into spine beam.
- Foot of spine beam housed in pocket cast into ground-floor slab.
- In-situ RC landing edge beam.
- Precast concrete spine beam.
- Ground-floor slab.
- Damp-proof membrane.
- Precast concrete double cantilever tread.
- Reinforcement.
- Fixing bolt slot made good.
- 2 No. cast-in fixing bolts per tread.
- Reinforcement to waist of spine beam.
- Precast concrete spine beam.
- Anchor bars.
- Binders or stirrups.
- Main bars.

TYPICAL SECTION
Precast Concrete Spiral Stairs ~ this form of stair is usually constructed with an open riser format using tapered treads which have a keyhole plan shape. Each tread has a hollow cylinder at the narrow end equal to the rise which is fitted over a central steel column usually filled with in-situ concrete. The outer end of the tread has holes through which the balusters pass to be fixed on the underside of the tread below, a hollow spacer being used to maintain the distance between consecutive treads.

Typical Example ~

![Diagram of Precast Concrete Spiral Stairs]

- balustrade
- edge beam under
- upper floor
- landing - cantilevered from floor
- tapered treads
- 150mm max overlap of treads
- concrete filled steel column
- balustrade
- column taken up to at least balustrade height and capped
- upper-floor edge beam
- landing slab
- continuous handrail
- balusters
- treads
- spacers between treads
- lower or ground floor

SECTION THROUGH LANDING
Metal Stairs ~ these can be produced in cast iron, mild steel or aluminium alloy for use as escape stairs or for internal accommodation stairs. Most escape stairs are fabricated from cast iron or mild steel and must comply with the Building Regulation requirements for stairs in general and fire escape stairs in particular. Most metal stairs are purpose made and therefore tend to cost more than comparable concrete stairs. Their main advantage is the elimination of the need for formwork whilst the main disadvantage is the regular maintenance in the form of painting required for cast iron and mild steel stairs.

Typical Example ~ Straight Flight Steel External Escape Stair
Metal Stairs

Typical Examples ~ Steel Spiral Stairs

- Balustrade and handrail
- 40 x 20 convex polished metal handrail
- 25 x 25 landing newel
- 20 x 20 baluster
- Floor
- 12mm diameter pin
- Tread unit
- 60mm diameter tube
- Tread units fitted over central tube
- Balustrade and handrail
- 25 x 25 bottom newel
- Riser leg relieved for easy maintenance
- Nut and washer to secure pin under lower tread unit
- Grip pattern
- Hole for central tube holes
- Assembly Details

Elevation

- Square steel plate landing
- Square plan shape stairwell formed in structural floor with 75mm minimum clearance to edge of steel stairs
- Balustrade and handrail

Plan

NB. Treads can be left hand right hand with 12 or 16 riser per circle.
Typical Examples ~ Steel String Stairs

- 50mm thick hardwood or 65mm thick precast concrete treads fixed to brackets
- 2 No. channel section string beams bolted to floors and landings with web cleats
- Timber or precast concrete treads fixed to brackets
- 2 No. steel box section string beams bolted to floors and landings with angle cleats

Overlap of treads = 25mm
Balustrades and Handrails — these must comply in all respects with the requirements given in Part K of the Building Regulations and in the context of escape stairs are constructed of a non-combustible material with a handrail shaped to give a comfortable hand grip. The handrail may be covered or capped with a combustible material such as timber or plastic. Most balustrades are designed to be fixed after the stairs have been cast or installed by housing the balusters in a preformed pocket or by direct surface fixing.

Typical Details ~
Institutional and Assembly Stairs ~ serving a place where a substantial number of people will gather.

Minimum going, 280 mm (may reduce to 250 mm if the building floor area <100 m²), maximum, 340 mm.

The maximum pitch for gangways with seated spectators in assembly buildings is 35°.

Other Stairs ~ all other buildings.

Minimum going, 250 mm maximum, 320 mm.

Common to both functional groups: twice the rise plus the going, 550 to 700 mm.

Alternative guidance: BS 5395-1: Code of practice for the design of stairs with straight flights and winders.

The rise and going in both situations may be subject to the requirements of Approved Document M: Access to and use of buildings. AD M will take priority and the following will apply:

Going (external steps) ~ 280 mm minimum (300 mm min. preferred).
Going (stairs) ~ 250 mm minimum.
Rise ~ 170 mm maximum.

Other AD M requirements for stairs:

Avoid tapered treads.
Width at least 1200 mm between walls, strings or upstands.
Landing top and bottom, minimum length not less than stair width.
Handrails both sides: circular or oval preferred as shown on next page.
Door openings onto landings to be avoided.
Full risers, no gaps.
Nosings with prominent colour 55 mm wide on tread and riser.
Nosing projections avoided. maximum of 25 mm if necessary.
Maximum 12 risers; exceptionally in certain small premises 16.
Non-slip surface to treads and landing.
Measurement of the going (AD K) ~

For stair widths greater than 1 m, the going is measured at 270 mm from each side of the stair.

Additional requirements:

Going of tapered treads not less than the going of parallel treads in the same stair.
Curved landing lengths measured on the stair centre line.
Twice the rise plus the going, 550 to 700 mm.
Uniform going for consecutive tapered treads.
Other going and rise limitations as shown on the previous page and page 804.

Alternative guidance that provides reasonable safety for use in dwellings according to the requirements of Approved Document K is published in BS 585 - 1: Specification for stairs with closed risers for domestic use, including straight and winder flights and quarter or half landings.

Handrail profile ~
Basic requirements:

- Lines of all risers to meet at one point, i.e. the geometric centre.
- Centre going to be uniform and not less than the going of adjacent straight flights.
- Centre going ≥ going of adjacent parallel tread.
- Centre going ≤ 700 − (2 × rise) in mm.
- Going at newel post, not less than 75mm.
- Taper angle of treads to be uniform.
- Clear width at least 770mm.

Key:

- G_c = centre going
- R_c = radius of arc given by equation (see next page)
- θ = angle subtended by each tread
- W = clear width
- E = risers meeting point to edge of clear width
- V = nosing overhang
To check whether the design for winder flights will comply with recommended dimensions, measurements can be taken from scale drawings or calculations may be applied.

Calculations ~

\[Gc = 2Rc \left(\sin \frac{\theta}{2} \right) \]

where \[Rc = \sqrt{\left(\frac{W}{2} + E\right)^2 + (V)^2} \]

E.g. \(W = 770 \text{ mm} \)
\(E = 150 \text{ mm} \)
\(V = 16 \text{ mm} \)

\[Rc = \sqrt{\left(\frac{770}{2} + 150\right)^2 + 16^2} \]

\[Rc = \sqrt{385 + 150^2 + 256} \]

\[Rc = \sqrt{(535)^2 + 256} \]

\[Rc = \frac{\sqrt{286225 + 256}}{286481} = 535 \text{ mm} \]

\[Gc = 2 \times 535 \left(\sin 30^\circ + 2 \right) \]

where \(\sin 30^\circ = 0.5 \)

\[Gc = 1070 \times (0.5 + 2) = 267 \text{ mm} \]

In most applications the winder flight will turn through a 90° angle on plan. Therefore, the angle \(\theta \) subtended by each of three treads will be 30°, i.e. \(\theta = \text{turn angle} + N \), where \(N \) = the number of winders.

For four winders, \(\theta = 90^\circ + 4 = 22.5^\circ \).

If the turn angle is other than 90° then \(\theta = (180 - \text{turn angle}) \times N \).

E.g. Turn angle of 120° with two winders, \(\theta = (180 - 120) + 2 = 30^\circ \).

Refs.: BS 585-1: Wood stairs. Specification for stairs with closed risers for domestic use, including straight and winder flights and quarter or half landings.

BS 5395-1: Code of practice for the design of stairs with straight flights and winders.
Summary recommendations of BS 5395-2:

<table>
<thead>
<tr>
<th>Stair type</th>
<th>Clear width</th>
<th>Rise inner going</th>
<th>Min. outer going</th>
<th>Max. centre going</th>
<th>2 × rise + going</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>600</td>
<td>170–220</td>
<td>120</td>
<td>350</td>
<td>145</td>
</tr>
<tr>
<td>B</td>
<td>800</td>
<td>170–220</td>
<td>120</td>
<td>350</td>
<td>190</td>
</tr>
<tr>
<td>C</td>
<td>800</td>
<td>170–220</td>
<td>150</td>
<td>350</td>
<td>230</td>
</tr>
<tr>
<td>D</td>
<td>900</td>
<td>150–190</td>
<td>150</td>
<td>450</td>
<td>250</td>
</tr>
<tr>
<td>E</td>
<td>1000</td>
<td>150–190</td>
<td>150</td>
<td>450</td>
<td>250</td>
</tr>
</tbody>
</table>

All dimensions in millimetres.

1 See next page.
2 Minimum clear width.
3 270mm horizontally from inner handrail or column face if no handrail.
4 270mm horizontally from outer handrail or string (take least value).
5 Centre of clear width.

Clear headroom ~ measured from the pitch line (consecutive tread nosings at the geometric stair centre) vertically to any overhead obstruction. Normally 2.000m, but acceptable at 1.900m within 150mm of the centre column.

Landing ~ minimum angle subtended at the stair centre is 60°. Intermediate landings, minimum angle is 45° or a plan area ≥ two treads (take greater area).

Loading guide ~ (No. of treads × 0.2) + (1.5 for the landing)
E.g. 14 treads:
= (14 × 0.2) + (1.5) = 4.3kN.

Refs.:
BS 5395-2: Stairs, ladders and walkways. Code of practice for the design of helical and spiral stairs.
Building Regulations, A.D. K: Protection from falling, collision and impact.
BS 5395-2. Stair types:

Category A ~
A small private stair for use by a limited number of people who are generally familiar with the stair. For example, an internal stair in a dwelling serving one room not being a living room or a kitchen. Also, an access stair to a small room or equipment room in an office, shop or factory not for public or general use. Subject to the provisions of A.D. B, possibly a fire escape for a small number of people. Typically, 1.300 to 1.800 m overall diameter.

Category B ~
Similar to category A, but providing the main access to the upper floor of a private dwelling. Typically, 1.800 to 2.250 m overall diameter.

Category C ~
A small semi-public stair for use by a limited number of people, some of whom may be unfamiliar with the stair. Examples include a stair in a factory, office or shop and a common stair serving more than one dwelling. Typically, 2.000 to 2.250 m overall diameter.

Category D ~
Similar to category C, but for use by larger numbers of people. Typically, 2.000 to 2.500 m overall diameter.

Category E ~
A public stair intended to be used by a large number of people at one time. For example, in a place of public assembly. Typically, 2.500 to 3.500 m overall diameter.

Note 1: With regard to means of escape in the event of a fire, minimum widths given may be insufficient. All applications to satisfy the requirements of Building Regulations, Approved Documents B1 and B2: Fire safety. This has particular reference to stair clear width relative to the number of persons likely to use the stair and protection of the stairwell.

Note 2: In addition to an outer handrail, an inner handrail should be provided for categories C, D and E.
Functions – the main functions of any door are to:
1. Provide a means of access and egress.
2. Maintain continuity of wall function when closed.
3. Provide a degree of privacy and security.

Choice of door type can be determined by:
1. Position – whether internal or external.
2. Properties required – fire resistant, glazed to provide for borrowed light or vision through, etc.
3. Appearance – flush or panelled, painted or polished, etc.

Door Schedules – these can be prepared in the same manner and for the same purpose as that given for windows on page 446.

Internal Doors – these are usually lightweight and can be fixed to a lining, if heavy doors are specified these can be hung to frames in a similar manner to external doors. An alternative method is to use doorsets which are usually storey height and supplied with prehung doors.

Typical door Lining Details –

[Diagram of door lining details including labels for head, housed joint, temporary bracing, 21 or 27mm, temporary strut, 70 x 20 architrave, packing as necessary, internal wall, internal flush door, 35 x 12 planted stop, door lining fixed to wall, typical door lining, jamb detail]
Internal Doors ~ these are similar in construction to the external doors but are usually thinner and therefore lighter in weight.

Typical Examples ~

- **Width range**: 305 to 838 mm
- **Height range**: from 1829 to 2032 mm
- **Facing materials**: hardboard, plywood, laminated plastic
- **Edge lipping**
- **Common internal door size**: 1981 high x 762 mm wide
- **Glazed**: 450 x 450 mm observation panel
- **Facing materials**: hardboard, plywood

FLUSH DOOR

- **Top rail**
- **Stile**
- **Lock rail**
- **Bottom rail**

LOUVRED DOOR

- **Panel of narrow width louvres**

GLAZED FLUSH DOOR

- **Top rail**
- **Stile**
- **Glazing bars**
- **Bottom rail**

GLAZED DOOR

- **Panels of narrow width louvres**
- **Clear or obscure glazing in small panes**
Flush doors of lightweight construction are suitable to access many interior situations. If there is an additional requirement for resistance to fire, the construction will include supplementary lining as shown on pages 839 and 840. Fire resisting and non-fire resisting doors can be produced with identical flush finishes, but the fire doors must be purposely labelled as shown on page 838.

Examples of Non-fire Doors for Interior Use ~

![Diagram of door sections: Skeleton Core, Cellular Core, Lattice Core, Spiral Core]

Note 1: Overall thickness can vary between manufacturers. Typically 35 or 40mm.

Note 2: Height and width dimension of 2032mm × 813mm also available from most joinery producers.
Internal Door Frames and Linings — these are similar in construction to external door frames but usually have planted door stops and do not have a sill. The frames are sized to be built in conjunction with various partition thicknesses and surface finishes. Linings with planted stops are usually employed for lightweight domestic doors.

Typical Examples —

Ref. BS 4787: Internal and external wood doorsets, door leaves and frames. Specification for dimensional requirements.
Doorsets — these are factory-produced fully assembled prehung doors which are supplied complete with frame, architraves and ironmongery except for door furniture. The doors may be hung to the frames using pin butts for easy door removal. Prehung door sets are available in standard and storey height versions and are suitable for all internal door applications with normal wall and partition thicknesses.

Typical Examples —

STANDARD HEIGHT DOORSET

doorsets fixed to wall or partition with 4 No. wood screws to each jamb

STOREY HEIGHT DOORSET

packing as required to underside of preformed opening in wall

packing to underside of ceiling

19 x 35 site-fixed architrave

57 x 43 framing

flush door

19 x 35 factory-fixed architrave

19 x 35 site-fixed architrave

20 x 13 site-fixed beads

door height 2040 widths 826, 726, 626, 526

hardwood threshold

maximum overall height 2400 head adjust to give overall heights from 2230 to 2380
Fire Doorset ~ a `complete unit consisting of a door frame and a door leaf or leaves, supplied with all essential parts from a single source'. The difference between a doorset and a fire doorset is that the latter is endorsed with a fire certificate for the complete unit. When supplied as a collection of parts for site assembly, this is known as a door kit.

Fire Door Assembly ~ a `complete assembly as installed, including door frame and one or more leaves, together with its essential hardware [ironmongery] supplied from separate sources'. Provided the components to an assembly satisfy the Building Regulations – Approved Document B, fire safety requirements and standards for certification and compatibility, then a fire door assembly is an acceptable alternative to a doorset.

Fire doorsets are usually more expensive than fire door assemblies, but assemblies permit more flexibility in choice of components. Site fixing time will be longer for assemblies.

(Quotes from BS EN 12519: Windows and pedestrian doors. Terminology.)

Fire Door ~ a fire door is not just the door leaf. A fire door includes the frame, ironmongery, glazing, intumescent core and smoke seal. To comply with European market requirements, ironmongery should be CE marked (see page 75). A fire door should also be marked accordingly on the top or hinge side. The label type shown below, reproduced with kind permission of the British Woodworking Federation, is acceptable.

Ref. BS 8214: Code of practice for fire door assemblies.
30-minute Flush Fire Doors ~ these are usually based on the recommendations given in BS 8214. A wide variety of door constructions are available from various manufacturers but they all have to be fitted to a similar frame for testing as a doorset or assembly, including ironmongery.

A door’s resistance to fire is measured by:
1. Insulation - resistance to thermal transmittance, see BS 476-20 & 22: Fire tests on building materials and structures.
2. Integrity - resistance in minutes to the penetration of flame and hot gases under simulated fire conditions.

Typical Details ~

SECtional Elevation
NB. intumescent strips in door edges provide an enhanced rating - see page 841.

Glass panel – can be included if 6mm thick wired glass with a maximum size of 1.2 m² is used. Glass to be fixed with non-combustible beads with a melting point of ≤ 900°C. See also page 842.

839
60-Minute Flush Fire Doors ~ like the 30-minute flush fire door shown on the previous page these doors are based on the recommendations given in BS 8214 which covers both door and frame. A wide variety of fire resistant door constructions are available from various manufacturers with most classified as having both insulation and integrity ratings of 60 minutes.

Typical Details ~

SECTIONAL ELEVATION

NB. intumescent strips in door edges and frame rebate would give above door an enhanced rating ~ see next page.

Glass panel - can be included if 6mm thick wired glass with a maximum size of 0.5 m² is used. Glass to be fixed with non-combustible beads with a melting point of ± 900° C. See also page 842.

Ref. BS 8214: Code of practice for fire door assemblies.
Fire and Smoke Resistance ~ doors can be assessed for both integrity and smoke resistance. They are coded accordingly, for example, FD30 or FD30s. FD indicates a fire door and 30 the integrity time in minutes. The letter ‘s’ denotes that the door or frame contains a facility to resist the passage of smoke.

Manufacturers produce doors of standard ratings ~ 30, 60 and 90 minutes, with higher ratings available to order. A colour-coded plug inserted in the door edge corresponds to the fire rating. See BS 8214, Table 1 for details.

Intumescent Fire and Smoke Seals ~

The intumescent core may be fitted to the door edge or the frame. In practice, most joinery manufacturers leave a recess in the frame where the seal is secured with rubber-based or PVA adhesive. At temperatures of about 150°C, the core expands to create a seal around the door edge. This remains throughout the fire-resistance period whilst the door can still be opened for escape and access purposes. The smoke seal will also function as an effective draught seal.

Further refs.:

BS EN 1634-1: Fire resistance and smoke control tests for door, shutter and openable window assemblies and elements of building hardware.

BS EN 13501: Fire classification of construction products and building elements.
Apertures will reduce the potential fire resistance if not appropriately filled. Suitable material should have the same standard of fire performance as the door into which it is fitted.

Fire-rated glass types:
• Embedded Georgian wired glass
• Composite glass containing borosilicates and ceramics
• Tempered and toughened glass
• Glass laminated with reactive fire-resisting interlayers

Installation ~ hardwood beads and intumescent seals. Compatibility of glass type and sealing product is essential, therefore manufacturer’s details must be consulted.

Intumescent products:
• Sealants and mastics ‘gun’ applied
• Adhesive glazing strip or tape
• Preformed moulded channel

Note: Calcium silicate preformed channel is also available. Woven ceramic fire-glazing tape/ribbon is produced specifically for use in metal frames.

Building Regulations refs.:
A.D. M. Section 3.10, visibility zones/panels between 500 and 1500 mm above floor finish, and A.D. K. Section 10.
A.D. K. Section 5, aperture size (see page 458).
Glazed Double Swing Doors

Typical Details ~

ex. 100 x 75 rectangular section door frame head

ex. 100 x 50 door head

ex. 100 x 50 meeting stiles

edges of door can be fitted with draught excluder with or without an intumescent strip insert

ex. 100 x 50 door stile

ex. 200 x 50 bottom rail

skirting

double action floor spring loose box sunk into floor

ELEVATION

meeting stile radius

meeting stiles

glass

3mm max.

screw to raise and lower pivot pin

upper part of top centre recessed into head of door frame

pivot pin

springs

lower part of top centre recessed into door head

TOP CENTRE

DOUBLE ACTION FLOOR SPRING

Glazing bead

central pivot
door stile
door jamb

pivots
Plasterboard ~ a rigid board composed of gypsum sandwiched between durable lining paper outer facings. For ceiling applications, the following types can be used:

Baseboard -
- 1220 \(\times \) 900 \(\times \) 9.5mm thick for joist centres up to 400mm.
- 1220 \(\times \) 600 \(\times \) 12.5mm thick for joist centres up to 600mm.

Baseboard has square edges and can be plaster skim finished. Joints are reinforced with self-adhesive 50mm min. width glass fibre mesh scrim tape or the board manufacturer’s recommended paper tape. These boards are also made with a metallised polyester foil backing for vapour check applications. The foil is to prevent any moisture produced in potentially damp situations such as a bathroom or in warm roof construction from affecting loft insulation and timber. Joints should be sealed with an adhesive metallised tape.

Wallboard —
9.5, 12.5 and 15mm thicknesses, 900 and 1200mm widths and lengths of 1800 and 2400mm. Longer boards are produced in the two greater thicknesses and a vapour check variation is available. Edges are either tapered for taped and filled joints for dry lining or square for skinned plaster or textured finishes.

Plasterboards should be fixed breaking joint to the underside of floor or ceiling joists with zinc plated (galvanised) nails or dry-wall screws at 150mm max. spacing. The junction at ceiling to wall is reinforced with glass fibre mesh scrim tape or a preformed plaster moulding.

![Diagram of plasterboard ceiling and skinned plaster finish](image)

- **12.5mm plasterboard ceiling and skinned plaster finish**
- **12.5mm plasterboard**
- **1-2mm plaster skim finish**
- **100 mm wide scrim tape under ceiling and wall plastered finishes**
- **Cove moulding plaster bonded to background**
- **Two-coat plaster to wall**
- **Alternative**
Suspended Ceilings - these can be defined as ceilings which are fixed to a framework suspended from main structure, thus forming a void between the two components. The basic functional requirements of suspended ceilings are:

1. They should be easy to construct, repair, maintain and clean.
2. So designed that an adequate means of access is provided to the void space for the maintenance of the suspension system, concealed services and/or light fittings.
3. Provide any required sound and/or thermal insulation.
4. Provide any required acoustic control in terms of absorption and reverberation.
5. Provide if required structural fire protection to structural steel beams supporting a concrete floor and contain fire stop cavity barriers within the void at defined intervals.
6. Conform with the minimum requirements set out in the Building Regulations governing the restriction of spread of flame over surfaces of ceilings and the exemptions permitting the use of certain plastic materials.
7. Flexural design strength in varying humidity and temperature.
8. Resistance to impact.
9. Designed on a planning module, preferably a 300 mm dimensional coordinated system.

Typical Suspended Ceiling Grid Framework Layout ~
Classification of Suspended Ceiling ~ there is no standard method of classification since some are classified by their function such as illuminated and acoustic suspended ceilings, others are classified by the materials used and classification by method of construction is also very popular. The latter method is simple, since most suspended ceiling types can be placed in one of three groups:

1. Jointless suspended ceilings.
2. Panelled suspended ceilings — see next page.
3. Decorative and open suspended ceilings — see page 848.

Jointless Suspended Ceilings ~ these forms of suspended ceilings provide a continuous and jointless surface with the internal appearance of a conventional ceiling. They may be selected to fulfil fire resistance requirements or to provide a robust form of suspended ceiling. The two common ways of construction are a plasterboard or expanded metal lathing soffit with hand-applied plaster finish or a sprayed applied rendering with a cement base.

Typical Details ~

See also: BS EN 13964: Suspended ceilings. Requirements and test methods.
Panelled Suspended Ceilings ~ these are the most popular form of suspended ceiling consisting of a suspended grid framework to which the ceiling covering is attached. The covering can be of a tile, tray, board or strip format in a wide variety of materials with an exposed or concealed supporting framework. Services such as luminaries can usually be incorporated within the system. Generally panelled systems are easy to assemble and install using a water level or laser beam for initial and final levelling. Provision for maintenance access can be easily incorporated into most systems and layouts.

Typical Support Details ~

Typical Panelled Suspended Ceiling Details ~
Decorative and Open Suspended Ceilings – these ceilings usually consist of an openwork grid or suspended shapes onto which the lights fixed at, above or below ceiling level can be trained, thus creating a decorative and illuminated effect. Many of these ceilings are purpose designed and built as opposed to the proprietary systems associated with jointless and panelled suspended ceilings.

Typical Examples –

![Diagram of suspended ceilings](image)
Separating floor construction for sound insulation purposes. References: Robust Details, see page 67 and Building Regulations, Approved Document E: Resistance to the passage of sound.

Alternative Finish with Floating Deck ~

18 mm min. moisture resistant chipboard
6 mm synthetic rubber
screed over structural concrete

Further Building Regulations References ~

Approved Document B: Fire safety, Volumes 1 and 2 - Fire resisting cavity barriers in concealed spaces. Located at compartmented divisions within a building (see page 18), otherwise at a maximum spacing that will depend on the situation, building type and its function. Minimum fire resistance is 30 minutes but often more depending on the building use and purpose.

Approved Document L: Conservation of fuel and power - thermal insulation requirements.
Functions ~ the main functions of paint are to provide:
1. An economical method of surface protection to building materials and components.
2. An economical method of surface decoration to building materials and components.

Composition ~ the actual composition of any paint can be complex but the basic components are:
1. Binder ~ this is the liquid vehicle or medium which dries to form the surface film and can be composed of linseed oil, drying oils, synthetic resins or water. The first function of a paint medium is to provide a means of spreading the paint over the surface and at the same time acting as a binder to the pigment.
2. Pigment ~ this provides the body, colour, durability, opacity and corrosion protection properties of the paint. The general pigment used in paint is titanium dioxide which gives good obliteration of the undercoats. Other pigments include carbon black and iron oxide.
3. Solvents and Thinners ~ these are materials which can be added to a paint to alter its viscosity. This increases workability and penetration. Water is used for emulsion paint and white spirit or turpentine for oil paint.
4. Drier ~ accelerates drying by absorbing oxygen from the air and converting by oxidation to a solid. Soluble metals in linseed oil or white spirit.

Paint Types ~ there is a wide range available but for most general uses the following can be considered:
1. Oil-based Paints ~ these are available in priming, undercoat and finishing grades. The latter can be obtained in a wide range of colours and finishes such as matt, semi-matt, eggshell, satin, gloss and enamel. Polyurethane paints have a good hardness and resistance to water and cleaning. Oil-based paints are suitable for most applications if used in conjunction with correct primer and undercoat.
2. Water-based Paints ~ most of these are called emulsion paints, the various finishes available being obtained by adding to the water medium additives such as alkyd resin and polyvinyl acetate (PVA). Finishes include matt, eggshell, semi-gloss and gloss. Emulsion paints are easily applied, quick drying and can be obtained with a washable finish and are suitable for most applications.
Supply ~ paint is usually supplied in metal containers ranging from 250 millilitres to 5 litres capacity to the colour ranges recommended in BS 381C (colours for specific purposes) and BS 4800 (paint colours for building purposes).

Application ~ paint can be applied to almost any surface providing the surface preparation and sequence of paint coats are suitable. The manufacturer’s specification and/or the recommendations of BS 6150 (painting of buildings) should be followed. Preparation of the surface to receive the paint is of the utmost importance, since poor preparation is one of the chief causes of paint failure. The preparation consists basically of removing all dirt, grease, dust and ensuring that the surface will provide an adequate key for the paint which is to be applied. In new work the basic buildup of paint coats consists of:

1. Priming Coats — these are used on unpainted surfaces to obtain the necessary adhesion and to inhibit corrosion of ferrous metals. New timber should have the knots treated with a solution of shellac or other alcohol-based resin called knotting prior to the application of the primer.

2. Undercoats — these are used on top of the primer after any defects have been made good with a suitable stopper or filler. The primary function of an undercoat is to give the opacity and buildup necessary for the application of the finishing coat(s).

3. Finish — applied directly over the undercoating in one or more coats to impart the required colour and finish.

Paint can applied by:

1. Brush — the correct type, size and quality of brush such as those recommended in BS 2992 (painters’ and decorators’ brushes) needs to be selected and used. To achieve a first class finish by means of brush application requires a high degree of skill.

2. Spray — as with brush application a high degree of skill is required to achieve a good finish. Generally compressed air sprays or airless sprays are used for building works.

3. Roller — simple and inexpensive method of quickly and cleanly applying a wide range of paints to flat and textured surfaces. Roller heads vary in size from 50 to 450 mm wide with various covers such as sheepskin, synthetic pile fibres, mohair and foamed polystyrene. All paint applicators must be thoroughly cleaned after use.
Painting – Preparation

Painting – the main objectives of applying coats of paint to a surface are preservation, protection and decoration to give a finish which is easy to clean and maintain. To achieve these objectives the surface preparation and paint application must be adequate. The preparation of new and previously painted surfaces should ensure that prior to painting the surface is smooth, clean, dry and stable.

Basic Surface Preparation Techniques –

Timber – to ensure a good adhesion of the paint film all timber should have a moisture content of less than 18%. The timber surface should be prepared using an abrasive paper to produce a smooth surface brushed and wiped free of dust and any grease removed with a suitable spirit. Careful treatment of knots is essential either by sealing with two coats of knotting or in extreme cases cutting out the knot and replacing with sound timber. The stopping and filling of cracks and fixing holes with putty or an appropriate filler should be carried out after the application of the priming coat. Each coat of paint must be allowed to dry hard and be rubbed down with a fine abrasive paper before applying the next coat. On previously painted surfaces if the paint is in a reasonable condition the surface will only require cleaning and rubbing down before repainting; when the paint is in a poor condition it will be necessary to remove completely the layers of paint and then prepare the surface as described above for new timber.

Building Boards – most of these boards require no special preparation except for the application of a sealer as specified by the manufacturer.

Iron and Steel – good preparation is the key to painting iron and steel successfully and this will include removing all rust, mill scale, oil, grease and wax. This can be achieved by wire brushing, using mechanical means such as shot blasting, flame cleaning and chemical processes and any of these processes are often carried out in the steel fabrication works prior to shop-applied priming.

Plaster – the essential requirement of the preparation is to ensure that the plaster surface is perfectly dry, smooth and free of defects before applying any coats of paint, especially when using gloss paints. Plaster which contains lime can be alkaline and such surfaces should be treated with an alkali-resistant primer when the surface is dry before applying the final coats of paint.
Paint Defects ~ these may be due to poor or incorrect preparation of the surface, poor application of the paint and/or chemical reactions. The general remedy is to remove all the affected paint and carry out the correct preparation of the surface before applying new coats of paint in the correct manner. Most paint defects are visual and therefore an accurate diagnosis of the cause must be established before any remedial treatment is undertaken.

Typical paint defects:

1. Bleeding † staining and disruption of the paint surface by chemical action, usually caused by applying an incorrect paint over another. Remedy is to remove affected paint surface and repaint with correct type of overcoat paint.

2. Blistering † usually caused by poor presentation allowing resin or moisture to be entrapped, the subsequent expansion causing the defect. Remedy is to remove all the coats of paint and ensure that the surface is dry before repainting.

3. Blooming † mistiness usually on high gloss or varnished surfaces due to the presence of moisture during application. It can be avoided by not painting under these conditions. Remedy is to remove affected paint and repaint.

4. Chalking † powdering of the paint surface due to natural ageing or the use of poor-quality paint. Remedy is to remove paint if necessary, prepare surface and repaint.

5. Cracking and Crazing † usually due to unequal elasticity of successive coats of paint. Remedy is to remove affected paint and repaint with compatible coats of paint.

6. Flaking and Peeling † can be due to poor adhesion, presence of moisture, painting over unclean areas or poor preparation. Remedy is to remove defective paint, prepare surface and repaint.

7. Grinning † due to poor opacity of paint film allowing paint coat below or background to show through, could be the result of poor application, incorrect thinning or the use of the wrong colour. Remedy is to apply further coats of paint to obtain a satisfactory surface.

8. Saponification † formation of soap from alkali present in or on surface painted. The paint is ultimately destroyed and a brown liquid appears on the surface. Remedy is to remove the paint films and seal the alkaline surface before repainting.
Joinery Production - this can vary from the flow production where one product such as flush doors is being made usually with the aid of purpose-designed and built machines, to batch production where a limited number of similar items are being made with the aid of conventional woodworking machines. Purpose-made joinery is very often largely handmade with a limited use of machines and is considered when special and/or high-class joinery components are required.

Woodworking Machines - except for the portable electric tools such as drills, routers, jigsaws and sanders most woodworking machines need to be fixed to a solid base and connected to an extractor system to extract and collect the sawdust and chippings produced by the machines.

Saws - basically three formats are available, namely the circular, cross-cut and band saws. Circular saws are general-purpose saws and usually have tungsten carbide tipped teeth with feed rates of up to 60,000 per minute. Cross-cut saws usually have a long bench to support the timber, the saw being mounted on a radial arm enabling the circular saw to be drawn across the timber to be cut. Band saws consist of an endless thin band or blade with saw teeth and a table on which to support the timber and are generally used for curved work.

Planers - most of these machines are combined planers and thicknessers, the timber being passed over the table surface for planing and the table or bed for thicknessing. The planer has a guide fence which can be tilted for angle planning and usually the rear bed can be lowered for rebating operations. The same rotating cutter block is used for all operations. Planing speeds are dependent upon the operator since it is a hand-fed operation whereas thicknessing is mechanically fed with a feed speed range of 6,000 to 20,000 per minute. Maximum planing depth is usually 10 mm per passing.

Morticing Machines - these are used to cut mortices up to 25 mm wide and can be either a chisel or chain morticer. The former consists of a hollow chisel containing a bit or auger whereas the latter has an endless chain cutter.

Tenoning Machines - these machines with their rotary cutter blocks can be set to form tenon and scribe. In most cases they can also be set for trenching, grooving and cross-cutting.

Spindle Moulder - this machine has a horizontally rotating cutter block into which standard or purpose-made cutters are fixed to reproduce a moulding on timber passed across the cutter.
Purpose-made Joinery - joinery items in the form of doors, windows, stairs and cupboard fitments can be purchased as stock items from manufacturers. There is also a need for purpose-made joinery to fulfil client/designer/user requirements to suit a specific need, to fit into a non-standard space, as a specific decor requirement or to complement a particular internal environment. These purpose-made joinery items can range from the simple to the complex which require high degrees of workshop and site skills.

Typical Purpose-made Counter Details ~

Diagram showing counter details with dimensions and labels for various components such as blockboard counter top, veneer, leather or similar finish, veneer band, timber band, veneer faced panels, kicking rail, counter top, hardwood edging, drawer with runners housed in sides, frame with projecting hardwood band, blockboard shelf, veneer faced blockboard front panels, kicking rail with durable facing in a contrasting colour (e.g. black laminate).
Typical Purpose-made Wall Panelling Details ~

- cornice
- frieze
- capping
- stile
- flat panel
- framing rail
- dado rail
- raised dado panel
- skirting

ELEVATION

- 75 x 75 cornice moulding
- 20 mm thick flat frieze
- 90 x 75 moulded capping
- 50 x 65 bolection moulding
- 12 mm thick flat panel
- 40 mm thick panel framing
- 35 x 75 moulded dado rail
- 40 mm thick raised and fielded dado panels

SECTION

- 20 mm thick softwood ground
- 40 mm thick moulded skirting
- 25 x 25 floor fillet

NB. all panelling to be in selected hardwoods.
Standard Finishings and Trimmings ~

Architraves

Torus Rebated Ogee Ovolo Chamfered Bullnose

Profile names vary between manufacturers

Picture rails

Profile names vary between manufacturers

Dado rails

Profile names vary between manufacturers

Skirtings

Bullnose Chamfered Torus Ogee Classic Ovolo
Joinery Timbers - both hardwoods and softwoods can be used for joinery works. Softwoods can be selected for their stability, durability and/or workability if the finish is to be paint but if it is left in its natural colour with a sealing coat the grain texture and appearance should be taken into consideration. Hardwoods are usually left in their natural colour and treated with a protective clear sealer or polish; therefore texture, colour and grain pattern are important when selecting hardwoods for high-class joinery work.

Typical softwoods suitable for joinery work:

1. Douglas Fir - sometimes referred to as Columbian Pine or Oregon Pine. It is available in long lengths and has a straight grain. Colour is reddish-brown to pink. Suitable for general and high-class joinery. Approximate density 530 kg/m³.

2. Redwood - also known as Scots Pine, Red Pine, Red Deal and Yellow Deal. It is a widely used softwood for general joinery work having good durability, a straight grain and is reddish-brown to straw in colour. Approximate density 430 kg/m³.

3. European Spruce - similar to redwood but with a lower durability. It is pale yellow to pinkish-white in colour and is used mainly for basic framing work and simple internal joinery. Approximate density 650 kg/m³.

4. Sitka Spruce - originates from Alaska, Western Canada and Northwest USA. The long, white strong fibres provide a timber quality for use in board or plywood panels. Approximate density 450 kg/m³.

5. Pitch Pine - durable softwood suitable for general joinery work. It is light red to reddish-yellow in colour and tends to have large knots which in some cases can be used as a decorative effect. Approximate density 650 kg/m³.

6. Parana Pine - moderately durable straight grained timber available in a good range of sizes. Suitable for general joinery work especially timber stairs. Light to dark brown in colour with the occasional pink stripe. Approximate density 560 kg/m³.

7. Western Hemlock - durable softwood suitable for interior joinery work such as panelling. Light yellow to reddish-brown in colour. Approximate density 500 kg/m³.

8. Western Red Cedar - originates from British Columbia and Western USA. A straight grained timber suitable for flush doors and panel work. Approximate density 380 kg/m³.
Typical hardwoods suitable for joinery works:

1. Beech - hard close grained timber with some silver grain in the predominately reddish-yellow to light brown colour. Suitable for all internal joinery. Approximately density 700 kg/m³.

2. Iroko - hard durable hardwood with a figured grain and is usually golden brown in colour. Suitable for all forms of high-class joinery. Approximate density 660 kg/m³.

3. Mahogany (African) - interlocking grained hardwood with good durability. It has an attractive light brown to deep red colour and is suitable for panelling and all high-class joinery work. Approximate density 560 kg/m³.

4. Mahogany (Honduras) - durable hardwood usually straight grained but can have a mottled or swirl pattern. It is light red to pale reddish-brown in colour and is suitable for all high-class joinery work. Approximate density 530 kg/m³.

5. Mahogany (South American) - a well-figured, stable and durable hardwood with a deep-red or brown colour which is suitable for all high-class joinery particularly where a high polish is required. Approximate density 550 kg/m³.

6. Oak (English) - very durable hardwood with a wide variety of grain patterns. It is usually a light yellow brown to a warm brown in colour and is suitable for all forms of joinery but should not be used in conjunction with ferrous metals due to the risk of staining caused by an interaction of the two materials. (The gallic acid in oak causes corrosion in ferrous metals.) Approximate density 720 kg/m³.

7. Sapele - close texture timber of good durability, dark reddish-brown in colour with a varied grain pattern. It is suitable for most internal joinery work especially where a polished finish is required. Approximate density 640 kg/m³.

8. Teak - very strong and durable timber but hard to work. It is light golden brown to dark golden yellow in colour which darkens with age and is suitable for high-class joinery work and laboratory fittings. Approximate density 650 kg/m³.

9. Jarrah (Western Australia) - hard, dense, straight grained timber. Dull red colour, suited to floor and stair construction subjected to heavy wear. Approximate density 820 kg/m³.
Composite Boards ~ factory-manufactured, performed sheets with a wide range of properties and applications. The most common size is 2440 × 1220 mm or 2400 × 1200 mm in thicknesses from 3 to 50 mm.

1. Plywood (BS EN 636) † produced in a range of laminated thicknesses from 3 to 25 mm, with the grain of each layer normally at right angles to that adjacent. 3, 7, 9 or 11 plies make up the overall thickness and inner layers may have lower strength and different dimensions to those in the outer layers. Adhesives vary considerably from natural vegetable and animal glues to synthetics such as urea, melamine, phenol and resorcinol formaldehydes. Quality of laminates and type of adhesive determine application. Surface finishes include plastics, decorative hardwood veneers, metals, rubber and mineral aggregates.

2. Block and Stripboards (BS EN 12871) † range from 12 to 43 mm thickness, made up from a solid core of glued softwood strips with a surface-enhancing veneer. Appropriate for dense panelling and doors.

- Battenboard – strips over 30 mm wide (unsuitable for joinery).
- Blockboard – strips up to 25 mm wide.
- Laminboard – strips up to 7 mm wide.

3. Compressed Strawboard (BS 4046) † produced by compacting straw under heat and pressure, and edge binding with paper. Used as panels with direct decoration or as partitioning with framed support. Also for insulated roof decking with 58 mm slabs spanning 600 mm joist spacing.
4. Particle Board

Chipboard (BS EN 319) – bonded waste wood or chip particles in thicknesses from 6 to 50 mm, popularly used for floors in 18 and 22 mm at 450 and 600 mm maximum joist spacing, respectively. Sheets are produced by heat pressing the particles in thermosetting resins.

Wood Cement Board – approximately 25% wood particles mixed with water and cement, to produce a heavy and dense board often preferred to plasterboard and fibre cement for fire cladding. Often three-layer boards, from 6 to 40 mm in thickness.

Oriented Strand Board (BS EN 300) – composed of wafer thin strands of wood, approximately 80 mm long × 25 mm wide, resin bonded and directionally oriented before superimposed by further layers. Each layer is at right angles to adjacent layers, similar to the structure of plywood. A popular alternative for wall panels, floors and other chipboard and plywood applications, they are produced in a range of thicknesses from 6 to 25 mm.

5. Fibreboards (BS EN 622-4) – basically wood in composition, reduced to a pulp and pressed to achieve three categories:

Hardboard density at least 800 kg/m³ in thicknesses from 3.2 to 8 mm. Provides an excellent base for coatings and laminated finishes.

Mediumboard (low density) 350 to 560 kg/m³ for pinboards and wall linings in thicknesses of 6, 9, and 12 mm.

Mediumboard (high density) 560 to 800 kg/m³ for linings and partitions in thicknesses of 9 and 12 mm.

Softboard, otherwise known as insulating board with density usually below 250 kg/m³. Thicknesses from 9 to 25 mm, often found impregnated with bitumen in existing flat roofing applications. Ideal as pinboard.

Medium Density Fibreboard, differs from other fibreboards with the addition of resin bonding agent. These boards have a very smooth surface, ideal for painting, and are available moulded for a variety of joinery applications. Density exceeds 600 kg/m³ and common board thicknesses are 9, 12, 18 and 25 mm for internal and external applications.

6. Woodwool (BS EN 13168) – units of 600 mm width are available in 50, 75 and 100 mm thicknesses. They comprise long wood shavings coated with a cement slurry, compressed to leave a high proportion of voids. These voids provide good thermal insulation and sound absorption. The perforated surface is an ideal key for direct plastering and they are frequently specified as permanent formwork.
Plastics in Building

Plastics ~ the term plastic can be applied to any group of substances based on synthetic or modified natural polymers which during manufacture are moulded by heat and/or pressure into the required form. Plastics can be classified by their overall grouping such as polyvinyl chloride (PVC) or they can be classified as thermoplastic or thermosetting. The former soften on heating whereas the latter are formed into permanent non-softening materials. The range of plastics available give the designer and builder a group of materials which are strong, reasonably durable, easy to fit and maintain and since most are mass produced of relative low cost.

Typical Applications of Plastics in Buildings ~

<table>
<thead>
<tr>
<th>Application</th>
<th>Plastics used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainwater goods</td>
<td>unplasticised PVC (uPVC or PVC-U).</td>
</tr>
<tr>
<td>Soil, waste, water and gas pipes and fittings</td>
<td>uPVC: polyethylene (PE); acrylonitrile butadiene styrene (ABS); polypropylene (PP).</td>
</tr>
<tr>
<td>Hot and cold water pipes</td>
<td>chlorinated PVC; ABS; polypropylene; polyethylene; PVC (not for hot water).</td>
</tr>
<tr>
<td>Bathroom and kitchen fittings</td>
<td>glass-fibre reinforced polyester (GRP); acrylic resins.</td>
</tr>
<tr>
<td>Cold water cisterns</td>
<td>polypropylene; polystyrene; polyethylene.</td>
</tr>
<tr>
<td>Rooflights and sheets</td>
<td>GRP; acrylic resins; uPVC.</td>
</tr>
<tr>
<td>DPCs and membranes, vapour control layers</td>
<td>low-density polyethylene (LDPE); PVC film; polypropylene.</td>
</tr>
<tr>
<td>Doors and windows</td>
<td>GRP; uPVC.</td>
</tr>
<tr>
<td>Electrical conduit and fittings</td>
<td>plasticised PVC; uPVC; phenolic resins.</td>
</tr>
<tr>
<td>Thermal insulation</td>
<td>generally cellular plastics such as expanded polystyrene bead and boards: expanded PVC; foamed polyurethane; foamed phenol formaldehyde; foamed urea formaldehyde.</td>
</tr>
<tr>
<td>Floor finishes</td>
<td>plasticised PVC tiles and sheets; resin-based floor paints; uPVC.</td>
</tr>
<tr>
<td>Wall claddings and internal linings</td>
<td>unplasticised PVC; polyvinyl fluoride film laminate; melamine resins; expanded polystyrene tiles and sheets.</td>
</tr>
</tbody>
</table>
Uses ~ to weather- and leak-proof junctions and abutments between separate elements and components that may be subject to differential movement. Also to gap fill where irregularities occur.

Properties:

- thermal movement to facilitate expansion and contraction
- strength to resist wind and other non-structural loading
- ability to accommodate tolerance variations
- stability without loss of shape
- colour fast and non-staining to adjacent finishes
- weather resistant

Maintenance ~ of limited life, perhaps 10 to 25 years depending on composition, application and use. Future accessibility is important for ease of removal and replacement.

Mastics ~ generally regarded as non-setting gap fillers applied in a plastic state. Characterised by a hard surface skin over a plastic core that remains pliable for several years. Based on a viscous material such as bitumen, polyisobutylene or butyl rubber. Applications include bitumen treatment to rigid road construction joints (page 167) and linseed oil putty glazing (page 449). In older construction, a putty-based joint may also be found between WC pan spigot outlet and cast iron socket. In this situation the putty was mixed with red lead pigments (oxides of lead), a material now considered a hazardous poison, therefore protective care must be taken when handling an old installation of this type. Modern push-fit plastic joints are much simpler, safer to use and easier to apply.

Sealants ~ applied in a plastic state by hand, knife, disposable cartridge gun, pouring or tape strip to convert by chemical reaction with the atmosphere (one part) or with a vulcanising additive (two part) into an elastomer or synthetic rubber. An elastomer is generally defined as a natural or synthetic material with a high strain capacity or elastic recovery, i.e. it can be stretched to twice its length before returning to its original length.
Formed of polysulphide rubber, polyurethane, silicone or some butyl rubbers.

Applications:
- Polysulphide ~ façades, glazing, fire protection, roads and paving joints. High modulus or hardness but not completely elastic.
- Polyurethane ~ general uses, façades and civil engineering. Highly elastic and resilient to abrasion and indentation, moderate resistance to ultraviolet light and chemicals.
- Silicone ~ general uses, façades, glazing, sanitary, fire protection and civil engineering. Mainly one part but set quickly relative to others in this category. Highly elastic and available as high (hard) or low (soft) modulus.

Two part ~ polysulphide- and polyurethane-based sealants are often used with a curing or vulcanising additive to form a synthetic rubber on setting. After the two parts are mixed the resulting sealant remains workable for up to about four hours. It remains plastic for a few days and during this time cannot take any significant loading. Thereafter it has exceptional resistance to compression and shear.

One part ~ otherwise known as room temperature vulcanising (RTV) types that are usually of a polysulphide, polyurethane or silicone base. Polysulphide and polyurethane cure slowly and convert to a synthetic rubber or elastomer sealant by chemical reaction with moisture in the atmosphere. Generally of less movement and loading resistance to two part sealants, but are frequently used in non-structural situations such as sealing around door and window frames, bathroom and kitchen fitments.

Other sealants:
- One part acrylic (water-based) RTV. Flexible but with limited elasticity. Internal uses such as sealing around door and window frames, fire protection and internal glazing.
- Silane modified polymer in one part RTV or two parts. Highly elastic and can be used for general applications as well as for façades and civil engineering situations.
Prior to 2003, several separate British Standards existed to provide use and application guidance for a range of sealant products. As independent publications these are now largely superseded, their content rationalised and incorporated into the current standard, BS EN ISO 11600: Building construction. Jointing products. Classification and requirements for sealants.

This International Standard covers materials application to jointing, classification of materials, quality grading and performance testing. This enables specific definition of a sealant’s requirements in terms of end use without having to understand the chemical properties of the various sealant types. Typical criteria are movement potential, elasticity and hardness when related to particular substrate surfaces such as aluminium, glass or masonry.

Grading summary ~

BS EN ISO 11600 G, for use in glazing.
BS EN ISO 11600 F, for façade and similar applications such as movement joints.

Other suffixes or sub-classes ~

E = elastic sealant, i.e. high elastic recovery or elastomeric.
P = plastic sealant, i.e. low elastic recovery.
HM = high modulus, indicates hardness.*
LM = low modulus, indicates softness.*

*By definition HM and LM are high movement (20–25%) types of elastic sealants, therefore the suffix E is not shown with these.

Associated standards ~

BS 6213: Selection of construction sealants. Guide.
BS 6093: Design of joints and jointing in building construction. Guide.
This page intentionally left blank
8 DOMESTIC SERVICES

DRAINAGE EFFLUENTS
SUBSOIL DRAINAGE
SURFACE WATER REMOVAL
ROAD DRAINAGE
RAINWATER INSTALLATIONS
DRAINAGE SYSTEMS
DRAINAGE PIPE SIZES AND GRADIENTS
WATER SUPPLY
COLD WATER INSTALLATIONS
HOT WATER INSTALLATIONS
CISTERNS AND CYLINDERS
SANITARY FITTINGS
SINGLE AND VENTILATED STACK SYSTEMS
DOMESTIC HOT WATER HEATING SYSTEMS
ELECTRICAL SUPPLY AND INSTALLATION
GAS SUPPLY AND GAS FIRES
OPEN FIREPLACES AND FLUES
SERVICES - FIRE STOPS AND SEALS
TELEPHONE AND ELECTRONIC COMMUNICATIONS INSTALLATIONS
Effluent — can be defined as that which flows out. In building drainage terms there are three main forms of effluent:

1. Subsoil Water — water collected by means of special drains from the earth primarily to lower the water table level in the subsoil. It is considered to be clean and therefore requires no treatment and can be discharged direct into an approved water course.

2. Surface Water — effluent collected from surfaces such as roofs and paved areas and like subsoil water is considered to be clean and can be discharged direct into an approved water course or soakaway.

3. Foul or Soil Water — effluent contaminated by domestic or trade waste and will require treatment to render it clean before it can be discharged into an approved water course.
Subsoil Drainage ~ Building Regulation C2 requires that subsoil drainage shall be provided if it is needed to avoid:
(a) the passage of ground moisture into the interior of the building or
(b) damage to the fabric of the building.

Subsoil drainage can also be used to improve the stability of the ground, lower the humidity of the site and enhance its horticultural properties. Subsoil drains consist of porous or perforated pipes laid dry jointed in a rubble-filled trench. Porous pipes allow the subsoil water to pass through the body of the pipe whereas perforated pipes which have a series of holes in the lower half allow the subsoil water to rise into the pipe. This form of ground water control is only economical up to a depth of 1.500. If the water table needs to be lowered to a greater depth other methods of ground water control should be considered (see pages 354 to 358).

The water collected by a subsoil drainage system has to be conveyed to a suitable outfall such as a river, lake or surface water drain or sewer. In all cases permission to discharge the subsoil water will be required from the authority or owner and in the case of streams, rivers and lakes, bank protection at the outfall may be required to prevent erosion (see next page).
Subsoil Drainage Systems — the layout of subsoil drains will depend on whether it is necessary to drain the whole site or if it is only the substructure of the building which needs to be protected. The latter is carried out by installing a cut off drain around the substructure to intercept the flow of water and divert it away from the site of the building. Junctions in a subsoil drainage system can be made using standard fittings or by placing the end of the branch drain onto the crown of the main drain.

Typical Examples

- **Herringbone**
 - branch drains
 - main drain
- **Grid Iron**
 - branch drains
 - main drain

TYPICAL OUTFALL DETAILS

- **Dry jointed subsoil drain**
- **Retaining wall in engineering bricks, min. ‘severe’ exposure to BS EN 771-1**
- **Last 3.000 to 5.000 laid as surface water drain to prevent marshlike conditions at outfall**

NB. Connections to surface water sewer can be made at inspection chamber or direct to the sewer using a saddle connector — it may be necessary to have a catchpit to trap any silt (see page 876).
General Principles — a roof must be designed with a suitable fall towards the surface water collection channel or gutter which in turn is connected to vertical rainwater pipes which convey the collected discharge to the drainage system. The fall of the roof will be determined by the chosen roof covering or the chosen pitch will limit the range of coverings which can be selected.

1. Direct connection to a drain discharging into a soakaway
2. Direct connection to a drain discharging into a surface water sewer
3. Indirect connection to a drain by means of a trapped gully if drain discharges into a combined sewer

See page 879 for details.
Surface Water Removal – Roofs

Rainwater pipe final discharge as given on previous page

Minimum Recommended Falls for Various Finishes –
Aluminium – 1:60 Lead – 1:120 Copper – 1:60
Built-up roofing felts – 1:60 Mastic asphalt – 1:80

PARAPET GUTTER
- gutter formed to discharge into internal rainwater pipes or to external rainwater pipes via outlets through the parapet

VALLEY GUTTER
- gutter formed to discharge into internal rainwater pipes or to external rainwater pipes sited at the gable ends
Surface Water Removal — Paved Areas

YARD GULLY COLLECTION

- paving drains away from building
- paved area laid to falls of 1:60

- yard gully — to be trapped with a 50mm minimum water seal if connected to a combined sewer
- maximum paved area per gully = 400 m²
- number and size of gullies governed by area being drained and/or shape of paved area

CHANNEL COLLECTION

- channel laid to falls of 1:120 and connected to drainage system with a trapped gully if it is a combined sewer outlet
- maximum paved area per gully = 400 m²
- number and size of channels governed by area being drained and/or shape of paved area

- could have grating cover
- continuous slot
- cast iron square mesh grating
- half-round glazed clayware open channel
- precast concrete channel blocks
- precast or in-situ concrete box channel
Sustainable Drainage Systems (SuDS) otherwise known as Sustainable Urban Drainage Systems (SUDS) cover a variety of applications that are designed to regulate surface water run-off. Their purpose is to control the level of water in the ground during periods of intense rainfall, thereby reducing the risk of flooding.

Problem ~ growth in urbanisation, increase in population, density of development, extreme weather, global warming and climate change are some of the factors that contribute to a rise in ground water table levels and higher volumes of surface water run-off.

Solution ~ before developing land and undertaking major refurbishment projects, it is necessary to design a surface and ground water control system that relieves potential concentrations of rainwater. This should replicate or improve the natural site drainage that existed before groundworks (foundations, basements, etc.) disturb the subgrade.

Applications ~ installation systems that manage surface water by attenuation and filtration as required by the Flood Water Management Act. Measures may include site treatment, containment and rainwater harvesting (see Building Services Handbook) before surface water can be discharged into surface water sewers. SUDS controls such as swales and retention ponds are another option, but space for these is limited or non-existent in urban situations.

Objectives ~

• Improved amenity.
• Improved water resource quality.
• Reduced exposure to flooding.
• Minimised dispersal through foul water drainage systems.
• Regulated natural flow conditions.

Refs.:

• Flood Water Management Act ~ establishes a SuDS approval body (SAB) and amends the automatic right to connect surface water drains to a public surface water sewer, connection subject to conditional standards.
Concrete Block Permeable Paving (CBPP) ~ unlike traditional impermeable surfaces that direct surface water to drainage channels and pipes, CBPP filters and removes pollutants before dispersal. Hydrocarbons are degraded and digested by naturally occurring microbes in the sub-base, therefore oil interceptors are not required. Silt traps are also not needed as the system retains silt. Block pavers filter and clean surface water before it is accommodated in the sub-base and slowly released into the ground. In less naturally draining subsoils the retained water percolates into perforated drainage pipes before flowing on to a drainage discharge system.

Permeable Block Paving Installations (see also page 168) ~

Subgrades of good drainage medium

Subgrades composed of material with limited drainage

Subgrades of no capacity for infiltration
Highway Drainage - the stability of a highway or road relies on two factors:
1. Strength and durability of upper surface.
2. Strength and durability of subgrade which is the subsoil on which the highway construction is laid.

The above can be adversely affected by water; therefore it may be necessary to install two drainage systems. One system (subsoil drainage) to reduce the flow of subsoil water through the subgrade under the highway construction and a system of surface water drainage.

Typical Highway Subsoil Drainage Methods

- **Highway**
 - **Kerb**
 - **150mm deep topsoil**
 - **Subsoil drain and rubble fill**
 - **Normal backfill**
 - **Filter mat**
 - **350 to 450**

- **Open Ditch**
 - **Kerb**
 - **Foundation**
 - **Collected water**
 - **up to 1.500**

Subsoil Drain - acts as a cut off drain and can be formed using perforated or porous drainpipes. If filled with rubble only it is usually called a French or rubble drain.

Open Ditch - acts as a cut off drain and could also be used to collect surface water discharged from a rural road where there is no raised kerb or surface water drains.

Surface Water Drainage Systems

- **Road gully**
- **Sw drain from building**
- **Combined sewer to treatment outfall**

- **Road gully**
- **Sw drain from building**
- **Separate sewer to river outfall**

Catch pit
- **Subsoil drain**

Road Drainage
Road Drainage ~ this consists of laying the paved area or road to a suitable crossfall or gradient to direct the run-off of surface water towards the drainage channel or gutter. This is usually bounded by a kerb which helps to convey the water to the road gullies which are connected to a surface water sewer. For drains or sewers under 900mm internal diameter inspection chambers will be required as set out in the Building Regulations. The actual spacing of road gullies is usually determined by the local highway authority based upon the carriageway gradient and the area to be drained into one road gully. Alternatively the following formula could be used:

\[
D = \frac{280 \sqrt{S}}{W}
\]

where \(D\) = gully spacing

\(S\) = carriageway gradient (per cent)

\(W\) = width of carriageway in metres

\[
\therefore \text{If } S = 1:60 = 1.66\% \text{ and } W = 4.500
\]

\[
D = \frac{280 \sqrt{1.66}}{4.500} = \text{say } 80.000
\]

Typical Road Gully Detail ~
carriageway paving

cast iron road gully grating and frame

footpath (see Roads ~ Footpaths on page 168)

drainage channel (fall 1:200)

300 x 150 precast concrete kerb

levelling brick course

kerb foundation strip

branch drain to surface water sewer

150 mm thick mass concrete surround

100 or 150 mm dia. outlet

precast concrete or clayware road gully
Materials ~ the traditional material for domestic eaves gutters and rainwater pipes is cast iron but uPVC systems are very often specified today because of their simple installation and low maintenance costs. Other materials which could be considered are aluminium alloy, galvanised steel and stainless steel, but whatever material is chosen it must be of adequate size, strength and durability.

For details of rainwater pipe connection to drainage see next page.

Note: Details show established construction with a block cavity closer course. New construction to have insulation continuity to prevent cold bridging. See page 507.
Rainwater Installation Details

pipe clip, holderbat or spigot with projecting ears
rainwater pipe
sealed access cover
ground level

rainwater shoe
mass concrete bed

NB. For details of rainwater pipe connection to gutter see previous page.
Soakaways ~ provide a means for collecting and controlling the seepage of rainwater into surrounding granular subsoils. They are not suitable in clay subsoils. Siting is on land at least level and preferably lower than adjacent buildings and no closer than 5m to a building. Concentration of a large volume of water any closer could undermine the foundations. The simplest soakaway is a rubble-filled pit, which is normally adequate to serve a dwelling or other small building. Where several buildings share a soakaway, the pit should be lined with precast perforated concrete rings and surrounded in free-draining material.

BRE Digest 365 provides capacity calculations based on percolation tests. The following empirical formula will prove adequate for most situations:

\[C = \frac{AR}{3} \]

where:
- \(C \) = capacity (m³)
- \(A \) = area on plan to be drained (m²)
- \(R \) = rainfall (m/h)

e.g. roof plan area 60 m² and rainfall of 50 mm/h (0.05 m/h)

\[C = \frac{60 \times 0.05}{3} = 1.0 \text{ m}^3 \] (below invert of discharge pipe)

Ref. BRE Digest 365: Soakaways.
Drains ~ these can be defined as a means of conveying surface water or foul water below ground level from one building only. Within the curtilage of that building they are the responsibility of the building owner.

Sewers ~ these have the same functions as drains but collect the discharge from a number of drains and convey it to the final outfall. Shared and public sewers are maintained by the local water and sewerage authority.

Basic Principles ~ to provide a drainage system which is simple, efficient and economical by laying the drains to a gradient which will render them self-cleansing and will convey the effluent to a sewer without danger to health or giving nuisance. To provide a drainage system which will comply with the minimum requirements given in Part H of the Building Regulations.

Typical Basic Requirements ~

All junctions should be oblique and in direction of flow

There must be an access point at a junction unless each run can be cleared from another access point.
Separate System — the most common drainage system in use where the surface water discharge is conveyed in separate drains and sewers to that of foul water discharges and therefore receives no treatment before the final outfall.

Typical Example —

If subsoil is suitable the rainwater pipes may be allowed to be connected direct to soakaways.

Drainage Systems
Combined System - this is the simplest and least expensive system to design and install but since all forms of discharge are conveyed in the same sewer the whole effluent must be treated unless a sea outfall is used to discharge the untreated effluent.

Typical Example -

Ref. BS EN 752: Drain and sewer systems outside buildings.
Partially Separate System ~ a compromise system ~ there are two drains, one to convey only surface water and a combined drain to convey the total foul discharge and a proportion of the surface water.

Typical Example ~

If subsoil is suitable the rainwater pipes may be allowed to be connected direct to soakaways.
Public Sewer ~ a sewer or drain that is owned or adopted by the local council or water authority/sewerage undertaker. Sewer pipes are at least 300mm nominal diameter, even when serving small housing sites. Surplus capacity will accommodate further connections for any later development without the expense of replacing the sewer.

Location ~ usually under public roads at a minimum depth of 1.2m, but may be within the boundary of a property where there has been later development or where it is proposed to further develop an established site. Old sewers, many of which were installed over 100 years ago, may not have documentation confirming their course. Others that were recorded are not necessarily accurate.

Damage Potential ~ some of the original sewers serving major cities were created as tunnels of brick construction and many are still functional. Whether tunnels or rigid clay pipes for tributary sewers, they will inevitably have suffered some deterioration from the effects of traffic vibration, superimposed loading, impact from new building work, road improvements and installation of other underground services in the vicinity. Cracking, fracture and even collapse can result, interrupting the drainage facility and possibly causing settlement damage to adjacent structures. Sewer repair on this scale will probably mean demolition of buildings or part of a building to effect access, or at least temporary structural support and underpinning.

Planning ~ initial consultation with the local planning authority to locate sewers. The building control department in conjunction with their highways department and possibly the local water authority/sewerage undertaking will determine from their records whether proposed building work is likely to be affected by sewer proximity.

Requirements where a sewer exists close by:
• New building work no closer than 3.0m to a sewer.
• Sewer diversion to satisfy the 3.0m dimension.
• Pipes of 150mm nominal diameter or less may be accepted within 3.0m distance if they are at a significant depth or protected by a reinforced concrete cover. This is more appropriate for drains, and guidance is available in Building Regulations Approved Document H, Section 2.

Inspection Chambers — these provide a means of access to drainage systems where the depth to invert level does not exceed 1:000.

Manholes — these are also a means of access to the drains and sewers, and are so called if the depth to invert level exceeds 1:000.

These means of access should be positioned in accordance with the requirements of part H of the Building Regulations. In domestic work inspection chambers can be of brick, precast concrete or preformed in plastic for use with patent drainage systems. The size of an inspection chamber depends on the depth to invert level, drain diameter and number of branch drains to be accommodated within the chamber. Ref. BS EN 752: Drain and sewer systems outside buildings.

Typical Details —

![Diagram of inspection chamber details]

- **Brick levelling course**
- **600 x 450 light duty cover and frame bedded in cm. mt.**
- **One brick wall in dense engineering quality bricks bedded in cm. mt. (1:3) and laid in English bond**
- **Branch drain**
- **150mm thick mass concrete (1:3:6) base**
- **100mm thick precast concrete slab**
- **25mm thick (1:1) cement/sand topping to 1:6 fall over mass concrete benching**

![Diagram of precast concrete details]

- **Precast concrete cover slab**
- **Precast concrete chamber sections to BS 5911-4, circular or rectangular shapes available**
- **600 minimum**
- **Main drainage channel**
- **150mm mass concrete encasing required in wet subsoils**
- **1:6 fall**
- **Precast concrete base unit with main channel and branch channel(s) cast in as required**
- **Step irons required for invert levels over 1:200 deep**
Plastic Inspection Chambers - the raising piece can be sawn horizontally with a carpenter's saw to suit depth requirements with the cover and frame fitted at surface level. Bedding may be a 100mm prepared shingle base or 150mm wet concrete to ensure a uniform support.

The unit may need weighting to retain it in place in areas of high water table, until backfilled with granular material. Under roads a peripheral concrete collar is applied to the top of the chamber in addition to the 150mm thickness of concrete surrounding the inspection chamber.

Typical Example ~

![Diagram of Plastic Inspection Chambers]

- **Cast iron cover and frame**
- **Raising piece** - one raising piece gives a chamber with a depth of 650mm, two raising pieces gives a chamber with a depth of 1000mm
- **Drainpipes**
- **Base unit with 5 × 100mm inlets and 1 × 100mm outlet**
- **Unused inlets left blanked off**
Means Of Access — provision is required for maintenance and inspection of drainage systems. This should occur at:

* the head (highest part) or close to it
* a change in horizontal direction
* a change in vertical direction (gradient)
* a change in pipe diameter
* a junction, unless the junction can be rodded through from an access point
* long straight runs (see table)

Maximum spacing of drain access points (m)

<table>
<thead>
<tr>
<th></th>
<th>To: Small access fitting*</th>
<th>Large access fitting*</th>
<th>Junction chamber</th>
<th>Inspection chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td>From:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain head</td>
<td>12</td>
<td>12</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>Rodding eye</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Small access fitting</td>
<td></td>
<td>22</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Large access fitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection chamber</td>
<td>22</td>
<td>45</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>Manhole</td>
<td>22</td>
<td>45</td>
<td>45</td>
<td>90</td>
</tr>
</tbody>
</table>

* Small access fitting is 150mm dia. or 150mm x 100mm. Large access fitting is 225mm x 100mm.

Rodding Eyes and Shallow Access Chambers — these may be used at the higher parts of drainage systems where the volume of excavation and cost of an inspection chamber or manhole would be unnecessary. SACs have the advantage of providing access in both directions. Covers to all drain openings should be secured to deter unauthorised access.

Excavations ~ drains are laid in trenches which are set out, excavated and supported in a similar manner to foundation trenches except for the base of the trench which is cut to the required gradient or fall.

Joints ~ these must be watertight under all working and movement conditions and this can be achieved by using rigid and flexible joints in conjunction with the appropriate bedding.
Watertightness ~ must be ensured to prevent water seepage and erosion of the subsoil. Also, in the interests of public health, foul water should not escape untreated. The Building Regulations, Approved Document H1: Section 2 specifies either an air or water test to determine soundness of installation.

AIR TEST ~ equipment: Manometer and accessories (see page 912)

 - two drain stoppers, one with tube attachment

Application ~

```
IC

drain trench left open until test completed (retest after backfilling)

rubber tube

hand bellows

expanding plug

expanding plug with tube attachment
```

Test ~ 100mm water gauge to fall no more than 25mm in five mins. Or, 50mm w.g. to fall no more than 12mm in five mins.

WATER TEST ~ equipment: Drain stopper

 - Test bend
 - Extension pipe

Application ~

```
IC

extension pipe filled with water

open trench to observe any leakage

lower IC

1.5m head

test bend

drain filled with water

expanding plug
```

Test ~ 1.5m head of water to stand for two hours and then topped up. Leakage over the next 30 minutes should be minimal, i.e.:

- 100mm pipe ~ 0.05 litres per metre, which equates to a drop of 6.4mm/m in the extension pipe, and
- 150mm pipe ~ 0.08 litres per metre, which equates to a drop of 4.5mm/m in the extension pipe.
Drainage Pipes ~ sizes for normal domestic foul water applications:
<20 dwellings = 100mm nominal inside diameter
20-150 dwellings = 150mm nominal inside diameter

Exceptions: 75mm diameter for waste or rainwater only (no WCs)
150mm diameter minimum for a public sewer

Other situations can be assessed by summating the Discharge Units from appliances and converting these to an appropriate diameter stack and drain, see BS EN 12056-2 (stack) and BS EN 752 (drain). Gradient will also affect pipe capacity and when combined with discharge calculations, provides the basis for complex hydraulic theories.

The simplest correlation of pipe size and fall is represented in Maguire’s rule:
4” (100mm) pipe, minimum gradient 1 in 40
6” (150mm) pipe, minimum gradient 1 in 60
9” (225mm) pipe, minimum gradient 1 in 90

The Building Regulations, approved Document H1 provides more scope and relates to foul water drains running at 0.75 proportional depth. See Diagram 9 and Table 6 in Section 2 of the Approved Document.

Other situations outside of design tables and empirical practice can be calculated.
E.g. A 150mm diameter pipe flowing 0.5 proportional depth.

Applying the Chezy formula for gradient calculations:
\[v = c \sqrt{m \times i} \]

where: \(v \) = velocity of flow (min for self-cleansing = 0.8 m/s)
\(c \) = Chezy coefficient (58)
\(m \) = hydraulic mean depth or:
\[\frac{\text{area of water flowing}}{\text{wetted perimeter}} \]
for 0.5 p.d. = diam/4
\(i \) = inclination or gradient as a fraction 1/x

Selecting a velocity of 1 m/s as a margin of safety over the minimum:
\[1 = 58 \sqrt{0.15/4 \times i} \]
\(i = 0.0079 \) where \(i = 1/x \)
So, \(x = 1/0.0079 = 126 \), i.e. a minimum gradient of 1 in 126
Water Supply – an adequate supply of cold water of drinking quality should be provided to every residential building and a drinking water tap installed within the building. The installation should be designed to prevent waste, undue consumption, misuse, contamination of general supply, be protected against corrosion and frost damage and be accessible for maintenance activities. The intake of a cold water supply to a building is owned jointly by the water authority and the consumer who therefore have joint maintenance responsibilities.

Typical Water Supply Arrangement

- Site boundary
- Property of water authority
- Property of consumer
 - See next page
- Expansion loop or goose neck to relieve stress on connection due to pipe settlement
- Cast iron surface box (BS 5834-2)
- 750 mm minimum ground for frost protection
- Screw-down cock
- Communication pipe at right angles to water authority main
- Water main – fully charged with water under pressure
- 150 mm internal diameter stop valve guard in clayware (BS 5834-1)
- Mass concrete base to suit subsoil type
- Stop valve
Water Supply – Basic Requirements

Service Pipe Materials:
unprotected iron - not suitable
unprotected steel - not suitable
galvanised steel - may be acceptable to water authority
lead - prohibited
copper - BS EN 1057
plastic - blue polyethylene BS EN 12201-2
uPVC BS EN ISO 1452-2

75 mm diameter drain pipes as protection for service pipe under building

750 mm minimum unless insulated against freezing

Service pipe must not pass through a drainage inspection chamber
pipes passing under foundations should be encased in mass concrete

end of pipe sealed with plastic or mastic

750 mm minimum

to storage cistern and drinking water tap

to stop valve and main - see previous page

service or supply pipe
minimum internal diameter
15 mm

ground level

site boundary

property
of water authority - see previous page

property of consumer

750 mm minimum

external wall

service pipe or rising main

drain-down valve

stop valve
General ~ when planning or designing any water installation the basic physical laws must be considered:

1. Water is subject to the force of gravity and will find its own level.
2. To overcome friction within the conveying pipes water which is stored prior to distribution will require to be under pressure and this is normally achieved by storing the water at a level above the level of the outlets. The vertical distance between these levels is usually called the head.
3. Water becomes less dense as its temperature is raised, therefore warm water will always displace colder water whether in a closed or open circuit.

Direct Cold Water Systems ~ the cold water is supplied to the outlets at mains pressure; the only storage requirement is a small capacity cistern to feed the hot water storage tank. These systems are suitable for districts which have high level reservoirs with a good supply and pressure. The main advantage is that drinking water is available from all cold water outlets, disadvantages include lack of reserve in case of supply cut off, risk of back syphonage due to negative mains pressure and a risk of reduced pressure during peak demand periods.

Typical Direct Cold Water System ~

115 litre feed cistern to hot water cylinder

isolating valve

15mm dia. rising main or service pipe

22mm dia. overflow and warning pipe

15mm dia.

15mm dia.

22mm dia.

22mm dia.

hot water storage cylinder

stop valve

to water main

NB. All pipe sizes given are outside diameters for copper tube.
Indirect Systems - Cold water is supplied to all outlets from a cold water storage cistern except for the cold water supply to the sink(s) where the drinking water tap is connected directly to incoming supply from the main. This system requires more pipework than the direct system but it reduces the risk of back syphonage and provides a reserve of water should the mains supply fail or be cut off. The local water authority will stipulate the system to be used in their area.

Typical Indirect Cold Water System -
cold water storage cistern minimum capacity 230 litres if used as a feed cistern and storage or 115 litres for storage only

NB. All pipe sizes given are outside diameters for copper tube.
Direct System ~ this is the simplest and least expensive system of hot water installation. The water is heated in the boiler and the hot water rises by convection to the hot water storage tank or cylinder to be replaced by the cooler water from the bottom of the storage vessel. Hot water drawn from storage is replaced with cold water from the cold water storage cistern. Direct systems are suitable for soft water areas and for installations which are not supplying a central heating circuit.

Typical Direct Hot Water System ~

- Cold water storage cistern
- Minimum capacity: 230 litres
- Overflow
- Isolating valve
- 15 mm dia. service pipe
- Or rising main
- 22 mm dia. open vent or expansion pipe to release air and relieve pressure
- 15 mm dia.
- Basin
- Bath
- 22 mm dia. hot water supply pipe
- 28 mm dia. primary flow pipe
- Possible pumped secondary return pipe
- In hard water areas, primary circuit pipes could be 35 mm diameter
- Sink
- 15 mm dia.
- Safety valve
- Boiler
- Drain valve
- 22 mm dia. cold feed pipe
- 140 litre hot water storage cylinder
- 450 min.

NB. All pipe sizes given are outside diameters for copper tube.
Indirect System ~ this is a more complex system than the direct system but it does overcome the problem of furring which can occur in direct hot water systems. This method is therefore suitable for hard water areas and in all systems where a central heating circuit is to be part of the hot water installation. Basically the pipe layouts of the two systems are similar but in the indirect system a separate small capacity feed cistern is required to charge and top up the primary circuit. In this system the hot water storage tank or cylinder is in fact a heat exchanger – see page 903.

Typical Indirect Hot Water System ~

cold water storage cistern

isolating valves

15 mm dia. service pipe or rising main

22 mm dia. cold feed pipe

22 mm dia.

Basin

15 mm dia.

22 mm dia. hot water supply pipe

SINK

drain valve

possible pumped secondary return pipe

15 mm dia. hot water supply pipe

Basin

Boiler

drain valve

15 mm dia. primary cold feed pipe

28 mm dia. primary flow pipe

28 mm dia. primary return pipe

central heating circuit

140 litre indirect hot water storage cylinder

36 litre feed and expansion cistern

gel of pumped central heating circuit

overflow

NB. All pipe sizes given are outside diameters for copper tube.
Mains Fed Indirect System — now widely used as an alternative to conventional systems. It eliminates the need for cold water storage and saves considerably on installation time. This system is established in Europe and the USA, but only acceptable in the UK at the local water authority’s discretion. It complements electric heating systems, where a boiler is not required. An expansion vessel replaces the standard vent and expansion pipe and may be integrated with the hot water storage cylinder. It contains a neoprene diaphragm to separate water from air, the air providing a 'cushion' for the expansion of hot water. Air loss can be replenished by foot pump as required.

NB. p.r.v. = pressure relief (safety) valve.
Temperatures ~
Boiler flow and return, approximately 80°C and 70°C respectively.
Stored hot water, 60°C to 65°C (not less than 60°C).
Distributed hot water, not less than 55°C.
Supply to outlets, approximately 50°C.

Hot Water System Temperatures

High temperatures are necessary to prevent the development of waterborne pathogens such as legionella pneumophila. Known generally as legionnaires' disease, this deadly bacterial infection was named after numerous American military veterans attending a reunion at a hotel in Philadelphia in 1976 died from exposure to the contaminated water system. There have subsequently been many more outbreaks throughout the world with similar consequences. Organisms are most prevalent in aquatic environments maintained at temperatures between 25°C and 45°C. This includes undisinfect water in air conditioning systems, fountains, humidifiers, jacuzzis and any other situation producing suspended moisture droplets.

Ref. Water Supply (Water Fittings) Regulations.
Hot Water Outlet Temperature ~ at 50°C scalding is unlikely for most people, but there is a risk where appliances are used by young children, the elderly and those with loss of sensory perception.

Safe hot water outlet temperatures ~
- Bath 43°C
- Shower 40°C
- Wash basin 40°C
- Bidet 37°C
- Sink 48°C

Application ~ new-build and existing buildings that are subject to change of use, or alterations that involve installation of new bathroom facilities.

Installation ~ thermostatic mixing valves (similar to shower mixers) are required as close as possible to the hot water outlet to control water temperature. These can be manually set to blend the hot and cold water supplies at a fixed discharge temperature. These valves contain an automated fast shutdown facility in the event of a supply failure.

Typical Installation ~

Refs.: Building Regulations, Approved Document G3: Hot water supply and systems.
BS EN 1111: Sanitary tapware, thermostatic mixing valves (PN 10). General technical specification.
BS EN 1287: Sanitary tapware, low pressure thermostatic mixing valves. General technical specification.
Flow Controls ~ these are valves inserted into a water installation to control the water flow along the pipes or to isolate a branch circuit or to control the draw-off of water from the system.

Typical Examples ~

GATE VALVE
- WEDGE-SHAPED GATE
- PACKING GLAND
- SPINDLE
- WHEEL HEAD

STOP VALVE
- CRUTCH HEAD
- SPINDLE
- LOOSE JUMPER
- PACKING GLAND
- FLOW

PORTSMOUTH FLOAT VALVE
- SEATING
- PISTON
- CAP
- BACK NUT
- LOCK NUT
- OUTLET
- FLOAT ARM

DIAPHRAGM FLOAT VALVE
- NYLON SEATING
- TOP OUTLET
- LOCK NUT
- FLOAT ARM

BIB TAP
- CAPSTAN HEAD
- SPINDLE
- PACKING GLAND
- EASY-CLEAN COVER
- JUMPER
- BIB OUTLET

PILLAR TAP
- SPINDLE
- EASY-CLEAN COVER
- JUMPER
- BACK NUT
- OUTLET

LOW PRESSURE CISTERN SUPPLY
HIGH PRESSURE MAINS SUPPLY

HOT AND COLD WATER INSTALLATIONS — FLOW CONTROLS
Cisterns - these are fixed containers used for storing water at atmospheric pressure. The inflow of water is controlled by a floatvalve which is adjusted to shut off the water supply when it has reached the designed level within the cistern. The capacity of the cistern depends on the draw-off demand and whether the cistern feeds both hot and cold water systems. Domestic cold water cisterns should be placed at least 750mm away from an external wall or roof surface and in such a position that it can be inspected, cleaned and maintained. A minimum clear space of 350mm is required over the cistern for floatvalve maintenance. An overflow or warning pipe of not less than 22mm diameter must be fitted to fall away to discharge in a conspicuous position. All draw-off pipes must be fitted with a gate valve positioned as near to the cistern as possible.

Cisterns are available in a variety of sizes and materials such as galvanised mild steel (BS 417-2), moulded plastic (BS 4213) and reinforced plastic (BS EN 13121 and 13280). If the cistern and its associated pipework are to be housed in a cold area such as a roof they should be insulated against freezing.
Indirect Hot Water Cylinders — these cylinders are a form of heat exchanger where the primary circuit of hot water from the boiler flows through a coil or annulus within the storage vessel and transfers the heat to the water stored within. An alternative hot water cylinder for small installations is the single feed or ‘Primatic’ cylinder which is self-ventning and relies on two airlocks to separate the primary water from the secondary water. This form of cylinder is connected to pipework in the same manner as for a direct system (see page 896) and therefore gives savings in both pipework and fittings. Indirect cylinders usually conform to the recommendations of BS 417-2 (galvanised mild steel) or BS 1566-1 (copper). Primatic or single-feed cylinders to BS 1566-2 (copper).

Prismatic Cylinders:

1. Cylinder is filled in the normal way and the primary system is filled via the heat exchanger, as the initial filling continues airlocks are formed in the upper and lower chambers of the heat exchanger and in the vent pipe.
2. The two airlocks in the heat exchanger are permanently maintained and are self-recuperating in operation. These airlocks isolate the primary water from the secondary water almost as effectively as a mechanical barrier.
3. The expansion volume of total primary water at a flow temperature of 82°C is approximately 1/25 and is accommodated in the upper expansion chamber by displacing air into the lower chamber; upon contraction reverse occurs.
Typical Examples:

- **MANIPULATIVE COMPRESSION JOINT**
 - Bead formed with swaging tool
 - Copper tube
 - Coupling fitting
 - Friction locking ring

- **NON-MANIPULATIVE COMPRESSION JOINT**
 - Copper tube
 - Coupling fitting
 - Solder retaining groove

- **SOLDERED CAPILLARY JOINT**
 - Screwed socket fitting
 - PTFE (polytetrafluoroethylene)
 - Tape or hemp and paste in thread

- **SCREWED JOINT**
 - Steel pipe

- **SOLVENT WELD JOINT**
 - Copper coupling fitting
 - Copper liner or sleeve

- **COMPRESSION JOINT**
 - Polythene pipe
Fireclay Sinks (BS 1206) – these are white glazed sinks and are available in a wide range of sizes from $460 \times 380 \times 200$ deep up to $1220 \times 610 \times 305$ deep and can be obtained with an integral drainer. They should be fixed at a height between 850 and 920 mm and supported by legs, cantilever brackets or dwarf brick walls.

Metal Sinks (BS EN 13310) – these can be made of enameled pressed steel or stainless steel with single or double drainers in sizes ranging from 1070×460 to 1600×530 supported on cantilever brackets or sink cupboards.
Sanitary Fittings – Baths and Showers

Typical Examples

- **Bath Body**
- **Bath Panel**
- **Wall Tiling**
- **Pillar Taps**
- **Flexible Overflow Pipe**
- **38mm Trap**
- **Adjustable Feet**

Longitudinal Section

- **Abutment Wall**
- **Wall Tiling**
- **Plug and Chain**
- **1675 to 1830**
- **420 to 730**

Cross Section

- **Abutment Wall**
- **Wall Tiling**
- **Flexible Tube**
- **Thermostatically Controlled Mixing Valve**
- **13 or 20mm Dia. Supply Pipe(s)**
- **Flexible Spray Head**
- **Shower Curtain or Cubicle**
- **500 x 600 up to 900 x 900 Shower Tray**

Baths – these are available in a wide range of materials, sizes, designs and colours usually conforming to the recommendations of

- **BS 1189** - cast iron
- **BS 1390** - sheet steel
- **BS EN 198** - acrylic
- **BS EN 232** - connecting dimensions

Showers – these can be freestanding with a curtain or cubicle enclosure or they can be an attachment to a bath mixer tap. Shower trays are usually made of glazed fire clay or acrylic plastic and occupy less space than a bath. To be efficient showers need a minimum head of water above the spray of 1.000.
Typical Examples ~

Wash-down Water Closet - BS EN 33 - common type which relies on flush of water to remove contents of bowl.
Horizontal outlet now standard.

Siphonic Water Closets - efficient and quiet in operation but higher risk of blockage if misused - can be single or double trap format.
Single Stack System – method developed by the Building Research Establishment to eliminate the need for ventilating pipework to maintain the water seals in traps to sanitary fittings. The slope and distance of the branch connections must be kept within the design limitations given below. This system is only possible when the sanitary appliances are closely grouped around the discharge stack.
Ventilated Stack Systems - where the layout of sanitary appliances is such that they do not conform to the requirements for the single stack system shown on the previous page ventilating pipes will be required to maintain the water seals in the traps. Three methods are available to overcome the problem, namely a fully ventilated system, a ventilated stack system and a modified single stack system which can be applied over any number of storeys.

FULLY VENTILATED SYSTEM

Used where there are a large number of appliances which are widely dispersed or grouped in ranges
Minimum diameter for branch ventilating pipes = 25 mm.

MODIFIED SINGLE STACK SYSTEM

Used to ventilate only those branch pipes exceeding length required for a single stack system

Typical Examples -

- Opening into building
- Less than 3,000 ventilating pipes
- Ventilating pipes max.
- Branch discharge pipe
- Basin
- Sink
- Bath
- Wc
- Cross-connection as alternative to wc branch ventilating pipe
- Ventilating stack
- Discharge stack
- Ventilation stack
- Branch discharge pipes
- Basin
- Sink
- Bath
- Wc
- Discharge stack
- Cross-connection above spillover level of highest appliance
- Cage or cover
- Termination of ventilating part of stack
Air Admittance Valve (AAV) ~ also known as a Durgo valve. A pressure-sensitive device fitted at the top of a discharge stack.

Location ~ above the highest possible flood level of the uppermost appliance connected to the stack, usually the wash basin. For accessible maintenance and testing, an AAV is positioned within the ventilated roof space. Unsightly stack ventilation above a roof is eliminated, with savings in pipe installation time and weathering the stack to the roof covering.

Application ~ up to four dwellings of one-, two- or three-storey height, the fifth to be conventionally vented at the highest part of the drain serving all five dwellings. AAVs are not suitable for older installations where an interceptor trap is used on the drain to each dwelling and/or where the stack discharges to a cesspool or septic tank. For higher rise buildings the use of AAVs is also limited. For instance, they should not be used if periodic surcharging occurs or where more than one building is connected to a common drain. AAV manufacturers should be consulted for specific situations.

Refs.: Building Regulations A.D. H1: Foul water drainage.
BS EN 12056-2: Gravity drainage systems inside buildings.
BS EN 12380: AAVs for drainage systems.
Lead slate ~ so-named as originally designed to fit with the courses of slate-covered roofs. Sheet lead is sufficiently adaptable to be cut and welded into purpose-made flashings to suit various tile profiles, roof slopes and stack diameters. Overall size is determined by the type and size of the tile or sheet roof covering. E.g. where used with plain tiling and a 100mm nominal diameter stack, a width of about 400mm wide and depth of about 450mm is sufficient, with a 100mm upstand at the back.

Fabricated vent pipe flashing ~ an off-the-shelf, one-fits-all ventilating stack pipe weathering, otherwise known as a flashing boot. Factory manufactured from flexible aluminium sheet with a moulded rubber sleeve located into a central hole through which the pipe is fitted. The rubber is sufficiently flexible to adapt to various roof pitches and to maintain a watertight seal to the stack.
Airtightness — must be ensured to satisfy public health legislation. The Building Regulations, Approved Document H1: Section 1, provides minimum standards for test procedures. An air or smoke test on the stack must produce a pressure at least equal to 38mm water gauge for not less than three minutes.

Application —

* if access plate is not provided, top connection to first WC may be plugged and rubber tube inserted through wc pan seal.

NB. Smoke tests are rarely applied now as the equipment is quite bulky and unsuited for use with uPVC pipes. Smoke-producing pellets are ideal for leakage detection, but must not come into direct contact with plastic materials.
One Pipe System ~ the hot water is circulated around the system by means of a centrifugal pump, the flow pipe temperature being about 80°C and the return pipe temperature being about 60 to 70°C. The one pipe system is simple in concept and easy to install but has the main disadvantage that the hot water passing through each heat emitter flows onto the next heat emitter or radiator, therefore the average temperature of successive radiators is reduced unless the radiators are carefully balanced or the size of the radiators at the end of the circuit is increased to compensate for the temperature drop.

Typical Layout ~

```
overflow
feed and expansion cistern
rising main
cold feed pipe to cylinder
expansion pipe
primary cold feed pipe
hot water circuit
drain valve
indirect hot water storage cylinder
primary flow pipe
primary return pipe
pump and isolating valves
boiler
```

ALTERNATIVE RADIATOR CONNECTION DETAILS
cheaper and neater method but less efficient than top flow connection shown below

```
radiator
balancing valve
bypass pipe
```

```
control valve
balancing valve
control valve
```

```
upper floor radiators
22 mm dia. heating circuit pipe
ground floor radiators
```

```
drain valve
bypass pipe
```
Two Pipe System ~ this is a dearer but much more efficient system than the one pipe system shown on the previous page. It is easier to balance since each radiator or heat emitter receives hot water at approximately the same temperature because the hot water leaving the radiator is returned to the boiler via the return pipe without passing through another radiator.

Typical Layout ~
Micro Bore System - this system uses 6 to 12mm diameter soft copper tubing with an individual flow and return pipe to each heat emitter or radiator from a 22mm diameter manifold. The flexible and unobtrusive pipework makes this system easy to install in awkward situations but it requires a more powerful pump than that used in the traditional small bore systems. The heat emitter or radiator valves can be as used for the one or two pipe small bore systems; alternatively a double entry valve can be used.
Controls ~ the range of controls available to regulate the heat output and timing operations for a domestic hot water heating system is considerable, ranging from thermostatic radiator control valves to programmers and controllers.

Typical Example ~

Boiler ~ fitted with a thermostat to control the temperature of the hot water leaving the boiler.

Heat Emitters or Radiators ~ fitted with thermostatically controlled radiator valves to control flow of hot water to the radiators to keep room at desired temperature.

Programmer/Controller ~ this is basically a time switch which can usually be set for 24 hours at once-daily or twice-daily time periods and will generally give separate programme control for the hot water supply and central heating systems. The hot water cylinder and room thermostatic switches control the pump and motorised valve action.
Electrical Supply ~ in the UK electricity is generated mainly from gas, coal, nuclear and hydro-electricity power plants. Alternative energy generation such as wind and solar power is also viable and considered in Part 16 of the Building Services Handbook. Distribution is through regional companies. The electrical supply to a domestic installation is usually 230 volt single phase and is designed with the following safety objectives:

1. Proper circuit protection to earth to avoid shocks to occupant.
3. Prevention of outbreak of fire.

Typical Electrical Supply Intake Details ~

- external wall
- consumer unit - sometimes housed in meter box
- meter box containing sealing chamber, service fuse and neutral link, and meter - should be sited on an outside wall adjacent to an external door
- 10 mm² minimum equipotential bonding cable connected to metal services with bonding clamps
- electricity supply company is responsible for cable up to and including the meter
- ground level
- mastic seal
- to distribution main
- incoming service cable

NB. For alternative arrangement of supply intake see following page.
Electrical Supply Intake — although the electrical supply intake can be terminated in a meter box situated within a dwelling, most supply companies prefer to use the external meter box to enable the meter to be read without the need to enter the premises.

Typical Electrical Supply Intake Details —

NB. For alternative arrangement of supply intake see previous page.
Entry and Intake of Electrical Service – the local electricity supply company is responsible for providing electricity up to and including the meter, but the consumer is responsible for safety and protection of the company’s equipment. The supplier will install the service cable up to the meter position where their termination equipment is installed. This equipment may be located internally or fixed externally on a wall, the latter being preferred since it gives easy access for reading the meter – see details on the previous page.

Meter Boxes – generally the supply company’s meters and termination equipment are housed in a meter box. These are available in fibreglass and plastic, ranging in size from 450mm wide × 638mm high to 585m wide × 815mm high with an overall depth of 177mm.

Consumer Control Unit – this provides a uniform, compact and effective means of efficiently controlling and distributing electrical energy within a dwelling. The control unit contains a main double pole isolating switch controlling the line and neutral conductors, called bus bars. These connect to the fuses or miniature circuit breakers protecting the final subcircuits.
Consumer's Power Supply Control Unit - this is conveniently abbreviated to consumer unit. As described on the previous page, it contains a supply isolator switch, live, neutral and earth bars, plus a range of individual circuit overload safety protection devices. By historical reference this unit is sometimes referred to as a fuse box, but modern variants are far more sophisticated. Overload protection is provided by miniature circuit breakers attached to the live or phase bar. Additional protection is provided by a split load residual current device (RCD) dedicated specifically to any circuits that could be used as a supply to equipment outdoors, e.g. power sockets on a ground floor ring final circuit.

RCD - a type of electromagnetic switch or solenoid which disconnects the electricity supply when a surge of current or earth fault occurs. See Part 11 of the Building Services Handbook for more details.

Typical Split Load Consumer Unit –

Note that with an overhead supply, the MAIN SWITCH is combined with a 100mA RCD protecting all circuits.

Notes:
Circuits (1) to fixtures, i.e. lights, cooker, immersion heater and smoke alarms.
Circuits (2) to socket outlets that could supply portable equipment outdoors.
Electric Cables ~ these are made up of copper or aluminium wires called conductors surrounded by an insulating material such as PVC or rubber.

Conduits ~ these are steel or plastic tubes which protect the cables. Steel conduits act as a cpc to earth whereas plastic conduits will require a separate cpc drawn in. Conduits enable a system to be rewired without damage or interference to the fabric of the building. The cables used within conduits are usually insulated only, whereas in non-rewirable systems the cables have a protective outer sheath.

Trunking ~ alternative to conduit and consists of a preformed cable carrier which is surface mounted and is fitted with a removable or ‘snap-on’ cover which can have the dual function of protection and trim or surface finish.
Wiring Systems — rewirable systems housed in horizontal conduits can be cast into the structural floor slab or sited within the depth of the floor screed. To ensure that such a system is rewirable, draw-in boxes must be incorporated at regular intervals and not more than two right angle boxes to be included between draw-in points. Vertical conduits can be surface mounted or housed in a chase cut into a wall provided the depth of the chase is not more than one-third of the wall thickness. A horizontal non-rewirable system can be housed within the depth of the timber joists to a suspended floor whereas vertical cables can be surface mounted or housed in a length of conduit as described for rewirable systems.
Cable Sizing — the size of a conductor wire can be calculated taking into account the maximum current the conductor will have to carry (which is limited by the heating effect caused by the resistance to the flow of electricity through the conductor) and the voltage drop which will occur when the current is carried. For domestic electrical installations the following minimum cable specifications are usually suitable:

- **Lighting Circuits** -
 - line conductor: 1.13 mm diameter
 - 1 mm² cross section area
 - neutral: as for line conductor

- **Lighting Circuits** -
 - line conductor: 1.38 mm diameter
 - 1.5 mm² cross section area
 - neutral: as for line conductor

- **Immersion Heater and Power Ring Circuits** -
 - line conductor: 1.78 mm diameter
 - 2.5 mm² cross section area
 - neutral: as for line conductor

- **32amp Cooker Circuit** -
 - line conductor: 7 No. 1.04 mm diameter wires
 - 6 mm² total cross section area
 - neutral: as for line conductor

All the above ratings are for the line and neutral conductors which will be supplemented with a circuit protective conductor as shown on page 921.

Electrical Accessories — for power circuits these include cooker control units and fused switch units for fixed appliances such as immersion heaters, water heaters and central heating controls.

Socket Outlets — these may be single or double outlets, switched or unswitched, surface or flush mounted and may be fitted with indicator lights. Recommended fixing heights are:

- **Plugs** —
 - protective conductor to earth: green/yellow cable
 - neutral: blue cable
 - cable grip
 - cap screw
 - BS 1363-1 plug
 - cartridge fuse: up to 720 watt - 3 amp
 - up to 3000 watt - 13 amp
 - line: brown cable

- **FOR THE ELDERLY**
 - floor handle height: 1040 mm.

- **FOR THE DISABLED**
 - floor handle height: 1040 mm.
Power Sockets — in new domestic electrical installations the ring final circuit is usually employed instead of the older obsolete radial system where socket outlets are on individual fused circuits with unfused round pin plugs. Ring circuits consist of a fuse or miniature circuit breaker protected subcircuit with a 32 amp rating for a line conductor, neutral conductor and a cpc to earth looped from socket outlet to socket outlet. Metal conduit systems do not require a cpc wire providing the conduit is electrically sound and earthed. The number of socket outlets on a ring final circuit is unlimited but a separate circuit must be provided for every 100m² of floor area. To conserve wiring, spur outlets can be used as long as the total number of spur outlets does not exceed the total number of outlets connected to the ring and that there are not more than two outlets per spur.

Typical Ring Final Circuit Wiring Diagram —

[Diagram showing a ring final circuit with labeled components: line, neutral, cpc to earth, 13 amp socket outlets, 13 amp spur socket outlet, cpc to earth, consumer control unit, isolating switch, and incoming supply.]
Lighting Circuits ~ these are usually wired by the loop-in method using a line, neutral and circuit protective conductor to earth cable with a 6amp fuse or miniature circuit breaker protection. In calculating the rating of a lighting circuit an allowance of 100watts per outlet should be used. More than one lighting circuit should be used for each installation so that in the event of a circuit failure some lighting will be in working order.

Electrical Accessories ~ for lighting circuits these consist mainly of switches and lamp holders. The latter can be wall mounted, ceiling mounted or pendant in format with one or more bulb or tube holders. Switches are usually rated at 5 amps and are available in a variety of types such as double or 2 gang, dimmer and pull or pendant switches. The latter must always be used in bathrooms.
Gas Supply — potential consumers of mains gas may apply to their local utilities supplier for connection, e.g. British Gas and E.ON amongst several others. The cost is normally based on a fee per metre run. However, where the distance is considerable, the gas authority may absorb some of the cost if there is potential for more customers. The supply, appliances and installation must comply with the safety requirements made under the Gas Safety (Installation and Use) Regulations, 1998, and Part J of the Building Regulations.

NB. For alternative gas supply arrangements see following page.
Gas Service Pipes:

1. Whenever possible the service pipe should enter the building on the side nearest to the main.
2. A service pipe must not pass under the foundations of a building.
3. No service pipe must be run within a cavity but it may pass through a cavity by the shortest route.
4. Service pipes passing through a wall or solid floor must be enclosed by a sleeve or duct which is end sealed with mastic.
5. No service pipe shall be housed in an unventilated void.
6. Suitable materials for service pipes are copper (BS EN 1057) and steel (BS EN 10255). Polyethylene (BS EN 1555) is normally used underground, but not above ground.

Typical Gas Supply Arrangement:

[Diagram showing gas supply arrangement with labels indicating various components and their locations.

NB. For preferred method of entry see previous page]
Gas Fires

Gas Fires ~ for domestic use these generally have a low energy rating of less than 7 kW net input and must be installed in accordance with minimum requirements set out in Part J of the Building Regulations. Most gas fires connected to a flue are designed to provide radiant and convected heating whereas the room sealed balanced flue appliances are primarily convector heaters.
Gas Fire Flues ~ these can be defined as a passage for the discharge of the products of combustion to the outside air and can be formed by means of a chimney, special flue blocks or by using a flue pipe. In all cases the type and size of the flue as recommended in Approved Document J, BS EN 1806 and BS 5440 will meet the requirements of the Building Regulations.

Typical Single Gas Fire Flues ~

LINED CHIMNEY ON EXTERNAL WALL FLUE PIPE ON EXTERNAL WALL LINED CHIMNEY ON INTERNAL WALL

Flue Size Requirements:
1. No dimension should be less than 63 mm.
2. Flue for a decorative appliance should have a minimum dimension measured across the axis of 175 mm.
3. Flues for gas fires - min. area = 12000 mm2 if round, 16500 mm2 if rectangular and having a minimum dimension of 90 mm.
4. Any other appliance should have a flue with a cross sectional area at least equal to the outlet size of the appliance.

Flue Blocks ~

ridge terminal

insulated ridge flue pipe connected to ridge terminal

clay/ceramic flue blocks to BS EN 1806

fireplace recess units

lintel unit

90 x 183 (nom.) flue, minimum cross sectional area 16500 mm2

25 mm wall thickness
Open Fireplaces ~ for domestic purposes these are a means of providing a heat source by consuming solid fuels with an output rating of under 50kW. Room heaters can be defined in a similar manner but these are an enclosed appliance as opposed to the open recessed fireplace.

Components ~ the complete construction required for a domestic open fireplace installation is composed of the hearth, fireplace recess, chimney, flue and terminal.

See also BS 5854: Code of practice for flues and flue structures in buildings.
Open Fireplace Recesses — these must have a constructional hearth and can be constructed of bricks or blocks of concrete or burnt clay or they can be of cast in-situ concrete. All fireplace recesses must have jambs on both sides of the opening and a backing wall of a minimum thickness in accordance with its position and such jambs and backing walls must extend to the full height of the fireplace recess.

Typical Examples —
Traditional Fireplace Details:

- Square lined flue of solid non-combustible blocks or bricks
- Rebated flue liners to BS EN 1457
- Fireplace surround to BS 125 fixed to wall with screws through cast-in fixing lugs
- 25 mm wide non-combustible tape forming expansion joint
- BS 1251 pcc lintel or hood unit – see detail below
- Cm./sand screed
- Superimposed hearth
- Ground floor
- Half brick fender wall
- Mass concrete bed
- Compacted hardcore

NB. In solid floor construction the constructional hearth is an integral part of the oversite concrete bed.

- 225mm diameter hole for flue
- 1008mm long x 443mm wide x 65mm thick precast concrete raft lintel
- Precast concrete insert piece
- Typical PCC Throat or Fireplace Hood Unit

932
Open Fireplace Chimneys and Flues - the main functions of a chimney and flue are to:

1. Induce an adequate supply of air for the combustion of the fuel being used.
2. Remove the products of combustion.

In fulfilling the above functions a chimney will also encourage a flow of ventilating air promoting constant air changes within the room which will assist in the prevention of condensation.

Approved Document J recommends that all flues should be lined with approved materials so that the minimum size of the flue so formed will be 200mm diameter or a square section of equivalent area. Flues should also be terminated above the roof level as shown, with a significant increase where combustible roof coverings such as thatch or wood shingles are used.

Typical Examples

- Flue to terminate at least 600mm above ridge and if within 600mm of ridge
- Flue to terminate at least 1,000mm above highest part of rooflight if within 2.300 of opening

![Diagram of roof with pitch of over 10° and pitch of less than 10°]
Typical Flue Liner and Chimney Pot Details ~

185 x 185 or 225mm dia.

clay rebated flue liner to BS EN 1457

clay chimney pot or flue terminal to BS EN 13502

150mm diameter

300 to 900

20

300 to 900

185 x 185 or 225mm dia.

Typical Outlet or Terminal Details ~

clay chimney pot or flue terminal

oversailing or offset brick courses forming capping

frost and thaw resistant or severe exposure quality bricks jointed in cement mortar 1:3

1:3 cement mortar weathering or flaunching

quarter brick offsets

high bond strength damp-proof course

clay flue liners jointed in cm.mt.

projecting clay flue liner as terminal

55mm overhang

moderate exposure quality clay bricks jointed in cement : lime : sand mortar

1:1/2:4 - 4½

precast concrete weathered coping

damp-proof course

clay flue liners jointed in cm.mt.

Refs.: BS EN 13502: Chimneys. Requirements and test methods for clay/ceramic flue terminals.
BS EN 771-1: Specification for (clay) masonry units.
Typical Chimney and Roof Junction Details:

- 25mm turned into brick joint, wedged and pointed.
- 70° angle
- to be dressed over soakers
- STEPPED FLASHING
- roof coverings
- 25mm wide turn in
- to be dressed over tiles
- APRON FLASHING
- soakers
- apron flashing
- BACK GUTTER
- to be dressed over fillet

NB. All flashings, aprons and gutter linings to be formed out of 1.75mm lead or other durable material(s). Soakers out of 1.25mm lead.

Ref. BS EN 1443: Chimneys. General Requirements.
Chimney Construction

Typical Chimney Outlet

Clay bricks – Frost and thaw, severe exposure-resistant quality. Min. density 1500kg/m³.

Calcium silicate bricks – Min. compressive strength 20.5 N/mm² (27.5 N/mm² for cappings).

Precast concrete masonry units – Min. compressive strength 15 N/mm².

Mortar – A relatively strong mix of cement and sand 1:3. Cement to be specified as sulphate resisting because of the presence of soluble sulphates in the flue gas condensation.

Chimney pot – The pot should be firmly bedded in at least three courses of brickwork to prevent it from being dislodged in high winds.

Flashings and dpcs – Essential to prevent water which has permeated the chimney from penetrating the building. The minimum specification is 1.75mm lead, 1.25mm for soakers. This should be coated both sides with a solvent-based bituminous paint to prevent the risk of corrosion when in contact with cement. The lower dpc may be in the form of a tray with edges turned up 25mm, except where it coincides with bedded flashings such as the front apron upper level. Here weep holes in the perpends will encourage water to drain. The inside of the tray is taken through a flue lining joint and turned up 25mm.
Combustion Air ~ it is a Building Regulation requirement that in the case of open fireplaces provision must be made for the introduction of combustion air in sufficient quantity to ensure the efficient operation of the open fire. Traditionally such air is taken from the volume of the room in which the open fire is situated. This can create air movements resulting in draughts. An alternative method is to construct an ash pit below the hearth-level fret and introduce the air necessary for combustion via the ash by means of a duct.

Ref. BS 1251: Specification for open-fireplace components.
Lightweight Pumice Chimney Blocks – these are suitable as a flue system for solid fuels, gas and oil. The highly insulative properties provide low condensation risk, easy installation as a supplement to existing or ongoing construction and suitability for use with timber frame and thatched dwellings, where fire safety is of paramount importance. Also, the natural resistance of pumice to acid and sulphurous smoke corrosion requires no further treatment or special lining. A range of manufacturer’s accessories allow for internal use with lintel support over an open fire or stove, or as an external structure supported on its own foundation. Whether internal or external, the units are not bonded in, but supported on purpose-made ties at a maximum of 2-metre intervals.

<table>
<thead>
<tr>
<th>flue (mm)</th>
<th>plan size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 dia.</td>
<td>390 × 390</td>
</tr>
<tr>
<td>200 dia.</td>
<td>440 × 440</td>
</tr>
<tr>
<td>230 dia.</td>
<td>470 × 470</td>
</tr>
<tr>
<td>260 square</td>
<td>500 × 500</td>
</tr>
<tr>
<td>260 × 150 oblong</td>
<td>500 × 390</td>
</tr>
</tbody>
</table>

flue (mm)

- **150 dia.** 390 × 390
- **200 dia.** 440 × 440
- **230 dia.** 470 × 470
- **260 square** 500 × 500
- **260 × 150 oblong** 500 × 390

Open Fireplaces and Flues
Fire Protection of Services Openings - penetration of compartment walls and floors (zones of restricted fire spread, e.g. flats in one building) by service pipes and conduits is very difficult to avoid. An exception is where purpose-built service ducts can be accommodated. The Building Regulations, Approved Document B3: Sections 7 [Vol. 1] and 10 [Vol. 2] determines that where a pipe passes through a compartment interface, it must be provided with a proprietary seal. Seals are collars of intumescent material which expands rapidly when subjected to heat, to form a carbonaceous charring. The expansion is sufficient to compress warm plastic and successfully close a pipe void for up to four hours.

In some circumstances fire stopping around the pipe will be acceptable, provided the gap around the pipe and hole through the structure are filled with non-combustible material. Various materials are acceptable, including reinforced mineral fibre, cement and plasters, asbestos rope and intumescent mastics.

Pipes of low heat resistance, such as PVC, lead, aluminium alloys and fibre cement, may have a protective sleeve of non-combustible material extending at least 1m either side of the structure.
Telephone Installations ~ unlike other services such as water, gas and electricity, telephones cannot be connected to a common mains supply. Each telephone requires a pair of wires connecting it to the telephone exchange. The external supply service and connection to the lead-in socket is carried out by telecommunication engineers. Internal extensions can be installed by the site electrician.

Typical Supply Arrangements ~

underground supply cables must be installed when the building is constructed - they are hidden and therefore have little or no effect on the surrounding environment

![Diagram of typical supply arrangements for underground supply cables, showing a lead-in socket, 19mm internal diameter duct sealed at both ends, and an extension telephone if required.]

overhead supply cable

wall hook at or near eaves

19mm internal diameter duct sealed at both ends

overhead supply cables are smaller and cheaper than underground supply cables – convenient but obtrusive

![Diagram of typical supply arrangements for overhead supply cables, showing a lead-in socket, extension telephone if required, and a socket on the external wall.]

extension telephone

if required

lead-in socket

19mm internal diameter duct sealed at both ends

UNDERGROUND SUPPLY CABLE

overhead supply cable

wall hook at or near eaves

19mm internal diameter duct sealed at both ends

SOCKET

extension telephone

if required

extension telephone

if required

OVERHEAD SUPPLY CABLE
Electronic Installations - in addition to standard electrical and telecommunication supplies into buildings, there is a growing demand for cable TV, security cabling and broadband access to the Internet. Previous construction practice has not foreseen the need to accommodate these services from distribution networks into buildings, and retrospective installation through underground ducting is both costly and disruptive to the structure and surrounding area, particularly when repeated for each different service. Ideally there should be a common facility integral with new construction to permit simple installation of these communication services at any time. A typical installation will provide connection from a common external terminal chamber via underground ducting to a terminal distribution box within the building. Internal distribution is through service voids within the structure or attached trunking.

Typical lateral distribution duct (see also Part 15 - Building Services Handbook).
This page intentionally left blank
INDEX

AAV (air admittance valve) 910
abutment details: double lap tiling 513;
 single ply roof membranes 536;
 timber flat roofs 524, 530
access for the disabled 586–9
access to site 112
accredited construction details 71
acrylic sealants 864
adhesion of concrete 240
adhesives: brick slip cladding 489;
 laminated timber 654, 860; parallel
 strand beams (PSB) 656; polyvinyl
 acetate (PVA) 481
admixtures, concrete 313
aggregates 250, 325; artificial stones 373;
 site storage 326; testing grading 134;
 see also sand
Agrément certification 77
air admittance valve (AAV) 910
air bricks 760
air infiltration see airtightness
air permeability see airtightness
air space resistances 550
airtightness 559; draughtproofing 583;
 performance standards 71; testing 585
alterations see building alterations
alternating tread stairs 810
aluminium alloy support frames 707
aluminium alloy windows 437; curtain
 wapping 711; hollow core 454
aluminium covered roofs 665, 872
aluminium stearate 411
aluminium surface coating 454
anchorages: ground anchors 309, 627; post-
 tensioned reinforced concrete 625
angle piling 347
angles of repose, excavations 322
annexes 391
apartment buildings see flats
Approved Documents 62–3
approved inspectors 65, 67
apron cladding panels 715
apron flashing 935
arches 425–7; cavity trays 426–7;
 construction 425; loads 6; stonework
 377; terminology 424
architects’ drawings 20
architectural form 4
architraves 857
area weighted average U-value 564
argon double glazing fill 455
artificial stones 373, 375
asbestos removal 197
ashlar 373–5, 377
asphalt: density 39; thermal performance
 551; see also mastic asphalt
assembly drawings 21
assembly stairs 827
asset rating 33
asymmetric beams 793
attached piers 389–90, 420–1
Atterberg limits test 110
auger bored piles 272–3, 355
auger holes 92, 97
axial grid 53
axonometric projections 24
backacters 204, 211, 321
back gutters, chimney stacks 935
balloon frame 475
balusters 806, 807, 826
balustrades 826
band saws 854
bar chart programmes 37
barrel bolt 466
barrel vaults 685–7, 693
baseboard 753, 844
baseline, setting out 154
basements: excavations 304–7; insulation
 318; slabs 314; substructure 11; walls
 314, 356–7; waterproofing 313–17,
 355–9
base plates 618, 635
basic module grid 52
baths 906
bats (bricks) 382, 384, 395
battenboard 860
batten gauge 517
battens, plasterboard fixing 754
bays, underpinning 342, 343
bay windows 445
BBA (British Board of Agrément) 77
beams: loads 16; see also joists; reinforced concrete beams; structural steel beams; timber beams
bedding: drains 889; wall tiles 757
bed joints 394
beech 859
Belfast truss 676, 677
below-ground structure see substructure
benchmark checklist 66
benchmarks, setting out 154, 158, 160
bentonite 269, 356
BERR (Department for Business Enterprise and Regulatory Reform) 76
bevelled closers 395
bib tap 901
bills of quantity 20
BIM (building information modelling) 81–4
binders, paint 850
bioremediation 367
birdcage scaffolds 180
bitumen: damp-proof courses 409; mastic 863
bitumen polymer damp-proof courses 409
bituminous felt: roof underlay 504; thermal performance 551; timber flat roof covering 529
black bolts 637
bleeding, paintwork 853
blinds, in triple glazing 457
blistering, paintwork 853
block and site plans 27
blockboard 860
blocks 399; artificial stones 373; fire resistance 736; storage on site 130; typical weights 38
blockwork: internal walls 732; sound insulation 797, 798; thermal performance 551
blooming, paintwork 853
blow holes, concrete 725
board cladding 482
boarded web girders 655
board materials 860–1; painting 852; typical weights 38; see also particle boards; plywood
boilers, energy efficiency 562
bolt boxes 618, 635
bolted connections, structural steelwork 637
bolts, types 637
bonding: blockwork 399; brickwork 383–9
bonding ties 734
bonnet hip tiles 505, 512
boot lintel 428
bored piles 259, 267–9, 355
boreholes: jet grouting 364; soil investigation 99; sump pumping 351–2; vapour extraction 366
boring methods 97–8
bottom hung casement 433
bottom rail 439
bowstring truss 675, 677
box and cellular raft basements 308
box beams, timber 655
box caisson 337
box construction 8
box culvert 339, 340
box piles 278
BPIC (Building Project Information Committee) 82
branch discharge pipes 908, 909
breather membranes 504, 510
BRE (Building Research Establishment) 76
Bressummer beam 779
brick infill panels 702
brick panel walls 699
bricks: compressive strength 381; fire resistance 736; manufacture 379–81; site tests 132; specials 395–7; storage on site 128, 130; typical weights 38; see also calcium silicate bricks
brick slip cladding 489
brickwork 382–94; attached piers 389–91; bonding 383–8; calculated 417–21; compressive strength 418; internal walls 731; jointing and pointing 393; movement joints 392, 700; slenderness ratio 419; sound insulation 797, 798; thermal performance 549, 551
bright bolts 637
British Board of Agrément (BBA) 77
British Standards (BS) 73
British Woodworking Federation (BWF) 436
British Woodworking Manufacturers Association (BWMA) 436
broken bond 383
brown-field development 365
buckling: reinforced concrete columns 603; structural steel columns 645
Building Act 1984 60; demolition 195, 196
building alterations: building control 65; Energy Performance Certificates (EPC) 32; thermal performance 562, 563
building control 64–9; demolition 195; see also planning applications
building envelope see external envelope
building environment 2–4
building extensions: building control 65, 69; Energy Performance Certificates (EPC) 32; permitted development 46, 47; thermal performance 562, 563
building form see architectural form
building information management (BIM) 81
building information modelling (BIM) 81–4
building materials: damp-proof courses 409; densities 39, 551–2; foundations 250; storage on site 126–31; thermal performance 551–2; typical weights 38–9
building notice 64, 68
building orientation see orientation of building
Building Project Information Committee (BPIC) 82
Building Regulations: Approved Documents 62–3; building control 64–9; exemptions 69; history and development 58–60
Building Research Establishment (BRE) 76
building services: communications 940–1; drainage 868–91; electrical installations 917–25; gas installations 926–9; hot and cold water 892–916; National Engineering Specification (NES) 83; open fireplaces and flues 930–8; service openings 939
building sites see construction sites
buildings of special historic or architectural interest 152
building survey 29–31
built-in beam 5
bulk density, soils 107
bulkhead lamp 120
bulking testing 133
bulldozers 205
butt hinges 466
buttress walls 405
butt welds 636
BWF (British Woodworking Federation) 436
BWMA (British Woodworking Manufacturers Association) 436
cable construction 10
cables, electrical see electrical cables
cables, prestressed concrete 622
caissons 337–8
calcium silicate board, thermal performance 551
calcium silicate bricks: compressive strength 418; fire resistance 736; manufacture 381; movement joints 392; uniformity 394; weight 38
camber arch 425
cantilevered beams 5, 693
cantilevered structures 661
cantilever foundations 265
cantilever retaining walls 293
cantilever scaffolds 182
cantilever stairs 815
cantilever steel beams 643
capping, contaminated soil 366
carbon emissions see CO₂ emissions
carbon factor (CF) 567
carbon index (CI) 567
car parking for the disabled 587
carpets and carpet tiles 764
carperts 69
Casagrande cup test 111
casein 654
casement fastener 438
casement stay 438
casement windows 433, 454
castellated steel beams 631
cast in-situ concrete see in-situ concrete
cast-on finishes, concrete 722
cast stone 373, 375; subsill 430
catch pits 876
cavity barriers: concealed spaces 849; party walls 737; separating walls 737; steel frame construction 478; timber frame construction 476
cavity closers 408, 414, 429, 508, 582, 583
cavity insulation 572–3; potential CO₂ reduction 568; retrofitting 575–6; thermal bridging 580–2
cavity trays: arches 426–7; gas-resistant construction 416; precast concrete ground floors 761; reinforced concrete raft foundations 260; timber flat roofs 525
cavity walls 400–3; calculations 417, 419; damp-proof courses 403, 413; drained cavity system 317; minimum requirements 401–3; opening details 428–31; sound insulation 797; stonework 378; thermal bridging 580; thermal insulation 568, 572–3, 575–6, 578, 581–2; thermal performance 555–6, 561; U-values 572–3, 575–6, 578
CDM Coordinator 55
ceiling board 753
ceilings: loads 15; plasterboard 783, 844; thermal performance 550, 849; see also suspended ceilings
cellular basement 308
cellular core door 835
CE mark 75
cement 250, 325; site storage 326
cement bonded particle board 527
cement grouts 358, 364
cement mortars 422–3; thermal performance 551
cement screed see concrete floor screeds
central heating boilers, energy efficiency 562
Index

central heating systems 897
centre arch 425
centre nailed slates 517
ceramic tiles 756
ceramic wash basins 905
certificates of ownership 45, 51
certification: benchmark checklist 66; BRE Certification Ltd 76; Building Regulations compliance 67; CE mark 74; fire doors 838; hot water and heating systems 565; structural timber 140
CF (carbon factor) 567
chain link fencing 126
chalking, paintwork 853
checked masonry 431
chemical damp-proof courses 411–12
chemical grouts 358
chemical treatments, contaminated soil 367
Chezy formula 891
chimney flues see flues
chimney pots 934–5, 936
chimney stacks 935
chipboard 861; flat roof decks 527; floor finishes 765
Cl (carbon index) 567
round saws 854
CIRIA (Construction Industry Research and Information Association) 77
CIRS (Construction Industry Scaffolders Registration Scheme) 185
CIS (Construction Information Service) 83
CI/SfB system 78, 81, 82
cisterns: hot and cold water storage 902–3; water closets 907
cladding 482–9; brickwork 700; curtain walling 710–13; over-cladding in glass 713; precast concrete panels 701, 714–20; rainscreen cladding (RSC) 577–8, 705–7; stone 375; structural glazing 708–9; see also tile hanging
clamp burning 379
clamp vibrators 238
classification systems 78–80, 82–3
clay bricks: compressive strength 418; fire resistance 736; manufacture 379–80; movement joints 392, 734; uniformity 394; weights 38
clay soils 245, 246; angles of repose 322; foundations 255, 259; investigation 100–1; shrinkage 109; thermal conductivity 552
climbing cranes 228, 232
climbing formwork 295
closed couple roof 496
closers (bricks) 395
CO₂ conversion factors 567
CO₂ emission rate 33; targets 72, 567–8
coarse aggregate 325
COBie (Construction Operations Building information exchange) 82
Code for Sustainable Homes 72
Codes of Practice (CP) 73
coding systems 78–80, 82–3
cofferdams 333–4
coffered floor 785–6
coil ties 616
cold bridging see thermal bridging
cold decks 523, 525, 528, 530
cold rolled steel 628
cold roofs 507–8, 569
cold water installations 894–5; flow controls 901
cold water storage cisterns 902
collar roof 496, 497
colour codes, health and safety 56
Columbian pine 858
columns: fire protection 609; loads 16, 421; underpinning 348; see also reinforced concrete columns; structural steel columns
column stanchion see vertical strut
combined column foundations 263
combined method (U-values) 556
combustion air 937
commissioning, hot water and heating systems 565
Common Arrangement of Work Section (CAWS) 79, 82
compaction, soil 361–4
compartment walls and floors 18; service openings 939
competent persons 65, 66
component drawings 21
component symbols 43
composite boards 860–1
composite joists 657
composite lintel 428
composite timber beams 655
compressed air caissons 338
compressed strawboard 860
compression arch 10
compression joints 904
compression tests: mortars 423; soils 106, 107
compressive strength: bricks 381, 418; mortars 418, 423
concealed spaces, fire-resisting construction 849
concoids 687
concrete: batching 327–8; curing 240; discoloration 725; foundations 250; materials 325; mixes 250, 330–1;
Index

curtain walling 708, 710–13; thermal performance 585
curved valley tiles 505, 512
cut-and-cover 339
cut-and-fill 319
cut tile cladding 487
dado rails 857
damp-proof courses (dpc) 408–14; bridging of 411–12; cavity walls 403; chemical 411–12; chimney stacks 936; insulating 414; openings 428, 429; see also cavity trays
damp-proof membranes (dpm) 408–14, 759
data management 81
datum 158
DC (Draft for public Comment) 73
DCLG (Department for Communities and Local Government) 34, 62, 71, 72, 76
DD (Draft for Development) 73
dead shoring 186, 187
death-watch beetle 544
decking, timber flat roofs 527
decorative suspended ceilings 848
decorative tiles 486
deep basement construction 309
deep strip foundations 251, 262
defects see construction defects; paint defects
demolition 195–9; rubble shutes 220; sustainable 199
demountable partitions 744–5
dense monolithic concrete 313
densities of materials 39, 551–2; concrete materials 328; stonework 371
dentil coursing 398
Department for Business Enterprise and Regulatory Reform (BERR) 76
Department for Communities and Local Government (DCLG) 34, 62, 71, 72, 76
deposit of plans 64, 68
DER (dwelling emission rate) 33, 567
designated mix (concrete) 330
designed mix (concrete) 330
dewatering 349
diagonal braced structure 660
diaphragm valve 901
diaphragm walls 406; deep basements 309–12; ground water control 356–7
diesel hammers 284
differential movement 735
dimensional changes in timber 148
dimensional coordination 53
dimensional grids 53
direct cold water systems 894
direct hot water systems 896
disability access see access for the disabled
discharge stacks, airtightness testing 912
discoloration of concrete 725
displacement piles 274–6, 354
display windows 585
ditches 876
documentation 20; coding systems 78–80, 82–3
dog leg stairs 811, 812
dog toothing 398
dome rooflights 698
dome structures 9
door frames: external 465; internal 836
door heads 465; thermal performance 580, 581
door jambs 465; thermal performance 580, 581
doors: draughtproofing 583; frames 465, 836; industrial 471–4; ironmongery 466; performance requirements 462; swings 41; thermal performance 560, 562, 585; types 463–4; see also external doors; internal doors
doorsets 837
door threshold 431
dormer windows 537–9
downpipes 879
dpc see damp-proof courses (dpc)
dpm see damp-proof membranes (dpm)
Draft for Development (DD) 73
Draft for public Comment (DC) 73
draglines 212
drainage 868–91; access points 888; combined system 883, 884; foul water 868, 881; separate systems 882, 884; stack discharge systems 908–11; subsoil water 869–70; surface water 871–80; surveys 30
drainage pipes 891; storage on site 131
drained cavity system 317
drained joints 717–18
Index

drains: access points 888; inspection chambers 886–7; laying 889; rainwater 879–81; testing 890
draughtproofing 568, 583
draught sealers/stops 434; doors 465; sash windows 439, 440
drawings 20–7; hatchings, symbols and notations 41
Drawings Code 79
dressed stone 377, 378; see also ashlar
driers, paint 850
drinking water on site 124
driven piles see displacement piles
drop arch 425
drop hammers 283
dry dash 480
dry lining 583, 750–2
dry rot 149, 150
dumpers 215, 236
Duro valve 910
Dutch bond 387
dwelling emission rate (DER) 33, 567
dynamic compaction 363
earth monitor unit (EMU) 121
earth moving equipment 205–13
earth pressures, retaining walls 290, 302–3
earthworks: road construction 165; see also embankments; excavations
eaves detail: double lap tiling 507, 508; roof sheet coverings 667, 669; single lap tiling 515; single ply roof membranes 536; slating 516; sprocketed eaves 503; timber flat roofs 523, 530
eaves gutters 878
eaves tiles 505
eaves vents 508, 541
economic considerations, plant 202
edge beams: framed construction 7; raft foundations 260
edgings, paving 169
effective column length: reinforced concrete columns 603; structural steel columns 645
effluent 868
elastomers 863
electrical accessories 923, 925
electrical cables 921, 923; holing and notching for 780–1
electrical supply 917–20; to building site 121; intake details 917–18
electrical symbols 43
electrical wiring 922
electricity meters 919
electrolysis 366
electronic communications 941
elements of construction, U-values 560–1, 585
elevations, drawings 21, 26
embankments: cutting, shaping and grading 207; soil nailing 300
emergency escape see escape from fire
emissivity 550
EMJA (English Joinery Manufacturers Association) 435, 436
EMU (earth monitor unit) 121
encapsulation of contaminated soil 366
drop bearing piles 266
energy efficiency: accredited construction details 71; hot water and heating systems 565; potential CO₂ reduction 568; rating 559, 566; see also thermal performance
Energy Performance Certificates (EPC) 32–5
EN (European Standards) 74
engineering bricks: compressive strength 381; damp-proof courses 410
engineers’ drawings 20
English bond 384
English cross bond 386
English garden wall bond 386
English Joinery Manufacturers Association (EMJA) 435, 436
entrances: access for the disabled 586, 588; thermal performance 585
Environment Act 1995 365
environmental considerations 3
environmental performance 72; see also energy efficiency; thermal performance
Environment Protection Act 1990 365
EOA (extension outlet assembly) 121
EPC (Energy Performance Certificates) 32–5
EPDM (ethylene propylene diene monomer) roof coverings 535
EPIC (Electronic Product Information Cooperation) 80, 82
epoxy resin injection mortars 412
EPS (expanded polystyrene) board 552, 763
escape from fire: escape signs 56; escape stairs 823; escape windows 432; fire doors 838–42; public stairs 832
ETAs (European Technical Approvals) 75
ethylene propylene diene monomer (EPDM) roof coverings 535
EU energy rating 33
European spruce 858
European Standards (EN) 74
European Technical Approvals (ETAs) 75
European Window Energy Rating Scheme (EWERS) 566
excavating machines 209–13, 307
excavations 319–24; basements 304–7;
 drains 889; ground water control 324,
 350–9; processes 321; setting out
 155–7; steel sheet piling 334–5;
 temporary support 322–4; water in
 319; see also trenches
expanded polystyrene (EPS) board 552, 763
expansion joints see movement joints
explosives (demolition) 198
exposed aggregate finishes 722
extension outlet assembly (EOA) 121
extensions see building extensions
exterior of building, surveys 30
external doors: frames 465; performance
 requirements 462; types 463–4
external envelope: accredited construction
 details 71; choice of materials 370;
 functions 17; thermal bridging 580–2
external surface resistance 550
external walls 389; cladding 482–9;
 rendering 479–81; thermal insulation
 572–8, 585; thermal performance
 550–1, 555–6, 560, 585
extrados 424
extruded brick 395
eyebrow dormer window 539
fabric membranes 694
face grid 53
face shovels 210
Factories Acts 1937/1961 54
falsework 610
fascias 507, 508, 515
fencing, site 113
fibreboards 861; thermal performance 551
filling systems 78–80
filled welds 636
fine aggregate 325
finger joints 651
finishes see surface finishes
finishing coats 851
finned walls 405
firecheck plasterboard 753
fireclay sinks 905
fire compartmentation see compartment
 walls and floors
fire doors 838–42
fire/emergency escape signs 56
Fire Officers’ Committee (FOC) 76
fire protection: reinforced concrete 609;
 service openings 939; structural
 steelwork 638–9; stud partitions 743
fire-resisting construction: concealed spaces
 849; fire doors 838–42; internal doors
 835; party/separating walls 738;
 plasterboard linings 743; timber upper
 floors 782–3
fire safety, public stairs 832
fire separation 18
fire stopping 939; see also cavity barriers
firrings, flat roofs 522
first aid 123
fitment symbols 43
fixed lights (windows) 433
flaking, paintwork 853
flashings: chimney stacks 935, 936; concrete
 claddings 718; roof abutments 513;
 vent pipes 911
flat roofs 491; garage attachments 391;
 thermal insulation 571; timber 522–36
flats, separation and compartmentation 18
flat top girders 673
flaunching 936
Flemish bond 385
Flemish cross bond 387
Flemish garden wall bond 386
flexible paving 165
flitch beams 655
float glass 448
floating floors 13, 799, 800–1, 849
floating piles 266
floating screeds 769
float valves 901, 902, 907
flood prevention 874
floor area, building control exemptions 69
floorboards 765
floor finishes 14, 764–5; suspended
 concrete floors 761, 763
floor plans and elevations 21, 26
floors: imposed loads 15, 40; sound
 insulation 799–802; surveys 31;
 thermal performance 550, 552, 560,
 585; see also ground floors
floor screeds see concrete floor screeds
floor tiles 764
floor traps 13
flow controls, hot and cold water
 installations 901
flues 930, 933–4; gas fires 929; liners 934,
 935; pumice chimney blocks 938;
 trimming around 775
flush bored piles 267, 269
flush doors 463, 834, 835
flying shoring 186, 189–91
fly jib attachment 224
FOC (Fire Officers’ Committee) 76
folded plate construction 8, 692
folded slab roofs 692
folding partitions 745
folding shutter 467, 470
footpaths 168
fork lift trucks 216
formation level 319
forming piles 268
formwork 610–16; in-situ reinforced concrete stairs 818; metal section (MetSec) decking 595; retaining walls 294–6; simply supported RC slabs 594; striking times 612
foul water 868
foul water drainage 881
foundations 244–86; design principles 261; loads 244; materials 250; piled 266–86; precast concrete frame connections 618, 648; setting out 155–7; sizing 254–6; soil investigation 95; structural steel base connections 635, 649; subsoil movements 246–8; types 251, 261–5; underpinning 341–8; see also substructure
framed construction 7; brick infill 699; infill panel walls 701–4; loads 16; precast concrete 617–20; setting out 156; steel framed 477–8; see also timber frame construction
framed ledged and braced doors 463
frames: external doors 465; internal doors 836
free-hand sketches 22
French drain 869, 876
Freyssinet anchorage 625
friction grip bolts 637
friction piles 266
Frodingham box pile 278
Frodingham sheet pile 334, 336
frost heave 245
fuels, CO2 conversion factors 567
full height casting 294
full planning application 45, 68, 70
fungal decay 149–50
furniture beetle 544
gabion wall 301
gable ended dormer 538
gable end roof 492; see also abutment details
galvanised corrugated steel roofing 665
gambrel roofs 501
gantries 184
gantry cranes 226
gantry girders 630
garage attachments 391
gas-fired boilers, energy efficiency 562
gas fires 928–9
gasket joints 719–20
gas-resistant membranes 415–16
gas supply 926–7
gate valve 901
gauge box 327
gedesic frame 682
Georgian style door 464
geo-technical survey 365
girders, roof 673–4
glass 448; low emissivity 453, 455
glass blocks 460–1; density 38
plastered doors: external 464; internal 834, 843
plastered wall tiles 756
plastered 449–59; fire doors 842;
manifestation 459; patent glazing 695–6; protection against impact 458–9; rooflights 695–7; terminology 448; thermal performance 560
plastering 439
Gluelam see laminated timber
gluing, laminated timber 653
going (stairs) 804
graders (machines) 207
gradients see sloping sites
granite, sources 372
granolithic finish 723
graphical symbols 56
gravels: angles of repose 322;
foundations 255; investigation 100–1;
thermal conductivity 552
green-field development 365
greenhouses 69
green roofs 546–7
‘green’ star rating 72
grid construction 10
grids, setting out 156
grinding, concrete 721
grinning, paintwork 853
grout length, reinforced concrete 599
ground anchors 309, 627
ground bearing capacity 244, 254
ground-bearing concrete: domestic ground floors 758; thermal insulation 553, 579; thermal performance 553–4
ground drains 869–70
ground floors 758–63; thermal bridging 580; thermal insulation 579, 581
ground freezing techniques 359
ground investigation 92–8
ground levels 158–60
ground movement 245; see also settlement; underpinning
ground vibration 361
ground water control 349–59; permanent exclusion 354–8; temporary exclusion 350–2
grouted membranes 354
grouting: ground water control 358; wall tiles 757
Index

grout injecting piling 273
gullies 873, 877, 879
gusset base 635
gusset plates 664, 667
gutters 872, 878
gypsum plaster 746; thermal performance 551
half bonding 383
half round roofing tiles 505, 512
handheld lamp 120
handrails 804, 806, 826, 828
hangers: suspended ceilings 845, 846, 847; timber roofs 497
hardcore, solid ground floors 759
hardwood floors, thermal performance 552
hardwoods 859
harmonised European product standards (hENs) 75
hatchings (drawings) 42
hazard signs 56
headers 383
head lap 517, 518
heads (opening support) 428, 431; doors 465; sash windows 439; thermal bridging 580; thermal insulation 581
head (water pressure) 894
health and safety 54—7; excavations 323; hoists 219; hot water temperatures 899—900; legislation and regulations 54—5; personal protective equipment (PPE) 125; protection against impact 458—9; public stairs 827—32; scaffolding 185; site health and welfare provision 123—4
Health and Safety at Work, etc. Act 1974 54, 56
Health and Safety (Safety Signs and Symbols) Regulations 1996 56
hearth 323
hearth 393—4, 937
heating systems: central heating 897; commissioning 565; energy efficiency 565
heave 246—8
helical stairs 816
hemispherical rotational dome 9
hENs (harmonised European product
classes) 75
herringbone strutting 772
high rise buildings see tall buildings
highway drainage 876—7
highway dumper 215
Highways Act 1980 45; demolition 195, 220; hoardings 116
hinges, precast concrete frame connections 648
hip detail: roofing tiles 512; slating 519
hip end dormer 538
hipped end roof 492
hip rafter 495
hip tiles 505, 512
hiring plant 203
hoardings 113, 116—17
Hoffmann kiln 380
hoists 217—19
holding down bolts 618
holing for pipes and cables 780—1, 922
holing gauge (slates) 517
hollow core aluminium casement windows 454
hollow pot floors 787, 793
honeycomb bond 760
horizontal pivot (window) 433
horizontal sliding sashes 433, 443, 451
horn (window): casement windows 434; sash windows 439, 440
hot rolled steel 629
hot water heating systems 896—903, 913—16; commissioning 565; controls 916; energy efficiency 565; flow controls 901; temperatures 899—900
hot water storage cylinders 896, 903; CO2 reduction of insulation 568
House Longhorn beetle 544, 545
houses see domestic structures; dwellings ‘H’ section piles 278
hull core structure 660
hydration, concrete 240
hydraulic jacks 344
hyperbolic paraboloids 9, 688—90, 693
igneous rocks 371
immersion heaters 903, 923
impact hammers 198
incineration, contaminated soil 367
inclined hammers 814, 817
incoming site assembly (ISA) 121
independent scaffolds 174
indirect cold water systems 895
indirect hot water systems 897, 903
industrial doors 467—70
inert gas double glazing fill 455
infestation control 544
infill panel walls 701—4
information management 81
injection mortars 412
insect damage control 544—5
infill panel walls 701—4
information management 81
injection mortars 412
insect damage control 544—5
in-situ concrete ground floors 759; large cast ground floors 766—7; thermal performance 552, 554
in-situ concrete piles 282, 355
in-situ concrete walls: formwork 615—16; sound insulation 797
in-situ piles 281
in-situ reinforced concrete framed structures 596, 600
in-situ reinforced concrete stairs 814–18
in-situ reinforced concrete suspended floors 784–8
in-situ reinforced concrete walls: ground water control 356; retaining walls 294–6
inspection chambers 886–7, 888
installer notification 66
institutional stairs 827
insulation see thermal insulation
insurance, demolition cover 197
interlocking piles 355
internal block walls 732–3; sound insulation 796, 797
internal brick walls 731, 733; sound insulation 797
internal compartmentation 18
internal doors 833–7; doorsets 837; fire and smoke resistance 841; fire doors 838–42; frames 836; performance requirements 462; vision panels 842
internal dormer 538
internal elements 728
internal floors: sound insulation 796; see also reinforced concrete suspended floors; separating floors; suspended timber floors internal partitions 739–45; demountable 744–5; fire protection 743; sound insulation 796
internal party walls 737–8
internal separation 18
internal surface resistances 550
internal walls 729–38; demountable partitions 744–5; fire protection 736; plaster finish 747–8; sound insulation 796–8, 802; stud partitions 740–3; see also masonry walls; separating walls
International Standards (ISO) 74
intersecting barrel vaults 687
intrados 424
intumescent seals 841, 842, 939
inverted warm decks 525, 528
iroko 859
ironmongery: doors 466; windows 438
iron, painting 852
ISA (incoming site assembly) 121
ISO (International Standards) 74
isometric projections 23

jack pile underpinning 344
jack rafter 502
jambs 429, 431; door frames 465; sash windows 439; thermal bridging 580; thermal insulation 581
Jarrah 859
jet grouting 364
jetted sumps 351–2
joinery: purpose-made 855–6; storage on site 131; timbers 858
joinery production 854–9
jointless suspended ceilings 846
joints: basement construction 314; brickwork 392–4; concrete cladding panels 717; drains 889; lead sheeting 532–3; mortar 393; plasterboard 755, 844; tolerances 394; water pipework 904
joist hangers 773, 775
joists: holing and notching 780–1; notched 779–81; sizes 526, 776–8; steel 629; steel web lattice 657; suspended timber floors 760, 771; timber flat roofs 523–6
kelly bars 271, 272, 356
kerbs 169, 876
key brick/stone 424, 425
kilns, brick 380
king closers 395
kitemark 73
knotting 851
krypton double glazing fill 455
laboratory tests: aggregate 134; soils 107
laced valley 520
laminated timber 651–4, 860
laminboard 860
land caisson 337
landings: concrete stairs 817, 820; metal stairs 823; timber stairs 807, 811–12
land reclamation 365–7
landscaping 171
lantern lights 697
lap (tiling) 507
Larssen sheet pile 334, 336
lateral restraint: precast concrete floors 791; timber suspended upper floors 773–4
latex floor screeds 770
lattice core door 835
lattice steel beams 632
lattice timber frame 655
lawful development certificates (LDC) 46
LDPE (low density polyethylene) damp-proof courses 409
lead: damp-proof courses 409; sheet materials 531–2; working tools 533
lead covered roofs 532–4, 872
lead flashing see flashings
Index

‘lead slate’ weathering 911
lean-to garage attachments 391
lean-to roof 496, 540
ledged and braced doors 463
Legionella 899
legislation 45; contaminated land 365
lens lights 697
letter plate 466
levelling 159
lift access for the disabled 589
lift casting 295
Lifting Operations and Lifting Equipment Regulations (LOLER) 1998 54, 219
light bulbs, energy saving 568
lighting circuits 923, 925
lighting, site 119–20
lightweight aggregate blocks: fire resistance 736; sound insulation 797, 798
lightweight aggregates 325
lightweight infill panels 703–4
lightweight pumice chimney blocks 938
lime bloom 725
lime mortar 422
limestone: ashlar 374; sources 372
lines (drawings) 41
lining boards 750–3
linings: flues 934, 935; internal doors 833, 836; sash windows 439, 440
linseed oil putty 449
lintels 428; internal walls 731, 732; thermal insulation 581
liquid limit, soils 110
listed buildings 152; demolition 195; Energy Performance Certificates (EPC) 32
Litzka beam 631
load bearing capacity, subsoil 244, 254
load bearing concrete panels 714
load-bearing partitions 739
load-bearing walls: external 251; internal 730, 731, 732
loaders 208
loads: domestic structures 15; foundations 244, 254–6; holing and notching in timber joists 780–1; openings 424; reinforced concrete beams/slabs 592, 598; structural steel beams 640–3; temporary support 192–4; timber beams 777–9
local authority building control 65, 66, 67
local materials 372
location drawings 21
loft hatches: draughtproofing 583; thermal performance 558
loft insulation, CO₂ reduction 568
LOLER (Lifting Operations and Lifting Equipment Regulations) 1998 54, 219
Longhorn beetle 544, 545
long span roofs 670–8
loop-in method 925
lorry mounted concrete pump 237
lorry mounted cranes 223–4
Loss Prevention Certification Board (LPCB) 76
Loss Prevention Council (LPC) 76
louvre doors 834
louvre windows 433
low carbon home 72
low density polyethylene (LDPE) damp-proof courses 409
low emissivity glazing 453, 455
LPCB (Loss Prevention Certification Board) 76
LPC (Loss Prevention Council) 76
luffing jibs 227
luminaires in suspended ceilings 847, 848
lychtus powder beetle 544
Maguire’s rule 891
mahogany 859
main distribution assembly (MDA) 121
mains fed indirect hot water systems 898
maintenance of plant 202
maisonettes, compartmentation 18
Management of Health and Safety at Work Regulations 1999 54, 56
manholes 886, 888
manifestation (glazing) 459
mansard roof 493
marble, sources 372
margin (slating) 517
masonry cement 422
masonry diaphragm walls 406
masonry fin walls 405
masonry partitions 739
masonry units: retaining walls 297–8; site tests 132; see also blocks; bricks
masonry walls: calculations 417–20; construction joints 734; fire protection 736; internal 731–8; opening details 428–31; reinforced bed joints 735; tolerances 407; see also blockwork; brickwork
mass retaining walls 291–2
mast cranes 227
mastic asphalt: damp-proof courses 410; roof covering 522, 530; roof drainage 872; tanking 315–16
mastics 863
matchboarding 482
materials see building materials
materials testing 132–42
mathematical tiles 488
mattress wall 301
MC see moisture content (MC)
MDA (main distribution assembly) 121
MD Insurance Services 67
measured surveys 87–9
mechanical float 239
meeting rails 439, 440
membrane construction 10
membrane roof structures 693–4
membranes: gas-resistant 415; ground water control 354; roofing 504, 510; single ply roof coverings 535; see also damp-proof membranes (dpm); vapour control layers
MERO system 681
metal casement windows 437
metal covered roofs 532–4, 665, 872
metallised polyester wall board 753, 844
metal section (MetSec) decking 594, 595, 793
metal sinks 905
metals, painting 852
metal stairs 823–5
metal stud partitions 742
metamorphic rocks 371
methane 415
method statements 36
MetSec (metal section) decking 594, 595, 793
micro bore systems 915
milled lead sheet 531
mineral insulated cable 921
mineral wool insulation: thermal performance 552; U-values 571, 573
mitre cut valley 520
mitred hips 519
mix ratio (concrete) 250, 331
mobile cranes 221
mobile scaffolds 177
modified plasticity index (MPI) 110
modular coordination 52–3
moisture content (MC): soils 109–11; timber 148, 651
moisture resistant plasterboard 753, 844
monitor roofs 672
monk bond 387
monogroup cable 622
monolithic caisson 337
monolithic screeds 768
monopitch roof 492, 540
monostrand anchorage 625
monostrand cable 622
mortar joints 393
mortars 422–3; additives 422; chimney stacks 936; classification 423; compressive strength 418, 423; glass block walling 461; mixes 423; renders 479, 481
mortice lock 466
morticing machines 854
moulding profiles 857
moulds, brick making 379
movement: cracking in walls 249; subsoil 245–8; thermal 532
movement joints 392; barrel vaults 686; brickwork cladding 700; masonry 734, 735; road construction 167
MPI (modified plasticity index) 110
mud-rotary drilling 98
mullions 434, 445
multiple glazing 455–7; thermal performance 561
multi-purpose excavators 213
multistorey buildings see tall buildings

NASC (National Access and Scaffolding Confederation) 185
National Access and Scaffolding Confederation (NASC) 185
National Building Specification (NBS) 79, 83
National Calculation Methodology (NCM) 584
National Engineering Specification (NES) 83
National House-Building Council (NHBC) 67
natural environment 2
NBS (National Building Specification) 79, 83
NCM (National Calculation Methodology) 584
needle and pile underpinning 345
needle design 192–3
neoprene gaskets 711
NES (National Engineering Specification) 83
new build: energy performance 562, 563; planning applications 49–50
newel posts 806–7, 812
NHBC (National House-Building Council) 67
nibblers 198
Nordus system 683
northern lights 670, 671, 687
nosings (stairs) 804, 805, 827
notations (drawings) 41
notched timber joists and beams 779–81, 922

oak 859
OD (Ordnance Datum) 158
oil-based paints 850
oil-fired boilers, energy efficiency 562, 568
OPC (Ordinary Portland Cement) 325
open caisson 337
open ditches 876
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>open drained joints</td>
<td>717–18</td>
</tr>
<tr>
<td>open excavations, basements</td>
<td>304</td>
</tr>
<tr>
<td>open fireplaces 930–8; chimneys and flues</td>
<td>933–6; 937</td>
</tr>
<tr>
<td>openings: draughtproofing</td>
<td>583</td>
</tr>
<tr>
<td>jamb 429; loads 424; in precast concrete</td>
<td>791</td>
</tr>
<tr>
<td>floors 430; sills 430; sizing 390, 562;</td>
<td></td>
</tr>
<tr>
<td>supports over 424–31; upper floor</td>
<td></td>
</tr>
<tr>
<td>trimming 775; see also service</td>
<td></td>
</tr>
<tr>
<td>openings</td>
<td></td>
</tr>
<tr>
<td>newel stairs 811</td>
<td></td>
</tr>
<tr>
<td>riser stairs 808–9</td>
<td></td>
</tr>
<tr>
<td>open suspended ceilings</td>
<td>848</td>
</tr>
<tr>
<td>open web steel beams</td>
<td>631</td>
</tr>
<tr>
<td>operational rating 33</td>
<td></td>
</tr>
<tr>
<td>Ordinary Portland Cement (OPC) 325</td>
<td></td>
</tr>
<tr>
<td>Ordnance Datum (OD) 158</td>
<td></td>
</tr>
<tr>
<td>orientation of building</td>
<td>3</td>
</tr>
<tr>
<td>oriented strand board (OSB) 527, 861</td>
<td></td>
</tr>
<tr>
<td>orthographic projections 23</td>
<td></td>
</tr>
<tr>
<td>OSB (oriented strand board) 527, 861</td>
<td></td>
</tr>
<tr>
<td>outline planning application 45</td>
<td></td>
</tr>
<tr>
<td>out of service position (cranes) 228</td>
<td></td>
</tr>
<tr>
<td>overcloak (lead sheeting) 533</td>
<td></td>
</tr>
<tr>
<td>overhead fork lift 216</td>
<td></td>
</tr>
<tr>
<td>overload protection 920</td>
<td></td>
</tr>
<tr>
<td>oversailing course 936</td>
<td></td>
</tr>
<tr>
<td>over-site concrete 253</td>
<td></td>
</tr>
<tr>
<td>oversite (excavations) 319</td>
<td></td>
</tr>
<tr>
<td>overturning (demolition) 198</td>
<td></td>
</tr>
<tr>
<td>oxidation, contaminated soil 367</td>
<td></td>
</tr>
<tr>
<td>pad foundations 252, 263; setting out 156;</td>
<td></td>
</tr>
<tr>
<td>soil investigation 95</td>
<td></td>
</tr>
<tr>
<td>paint brushes 851</td>
<td></td>
</tr>
<tr>
<td>paint defects 853</td>
<td></td>
</tr>
<tr>
<td>painting 851–3</td>
<td></td>
</tr>
<tr>
<td>paint rollers 851</td>
<td></td>
</tr>
<tr>
<td>paints 850–1</td>
<td></td>
</tr>
<tr>
<td>paint sprays 851</td>
<td></td>
</tr>
<tr>
<td>panel construction 8; diaphragm walls 357;</td>
<td></td>
</tr>
<tr>
<td>infill panel walls 701–4</td>
<td></td>
</tr>
<tr>
<td>panelled doors 463</td>
<td></td>
</tr>
<tr>
<td>panelled suspended ceilings 847</td>
<td></td>
</tr>
<tr>
<td>panelling, purpose-made 856</td>
<td></td>
</tr>
<tr>
<td>parallel lay cable 622</td>
<td></td>
</tr>
<tr>
<td>parallel strand beams (PSB) 656</td>
<td></td>
</tr>
<tr>
<td>Parana pine 858</td>
<td></td>
</tr>
<tr>
<td>parapet gutter 872</td>
<td></td>
</tr>
<tr>
<td>parapet walls 404</td>
<td></td>
</tr>
<tr>
<td>parking for the disabled 587</td>
<td></td>
</tr>
<tr>
<td>particle boards 861; cement bonded 527;</td>
<td></td>
</tr>
<tr>
<td>flat roof decks 527; floor finishes 765;</td>
<td></td>
</tr>
<tr>
<td>thermal performance 552</td>
<td></td>
</tr>
<tr>
<td>particle size distribution, soils 100</td>
<td></td>
</tr>
<tr>
<td>parting bead 439, 440</td>
<td></td>
</tr>
<tr>
<td>parting slip 440</td>
<td></td>
</tr>
<tr>
<td>partitions, internal see internal</td>
<td></td>
</tr>
<tr>
<td>partitions 737–8; thermal performance 560, 561</td>
<td></td>
</tr>
<tr>
<td>PAS (Publicly Available Specification) 73</td>
<td></td>
</tr>
<tr>
<td>passenger hoists 218</td>
<td></td>
</tr>
<tr>
<td>patent glazing 695–6</td>
<td></td>
</tr>
<tr>
<td>patent scaffolding 179</td>
<td></td>
</tr>
<tr>
<td>pattress plates/straps 774</td>
<td></td>
</tr>
<tr>
<td>paving: drainage 873; footpaths 168;</td>
<td></td>
</tr>
<tr>
<td>permeable 875; road construction 165–7;</td>
<td></td>
</tr>
<tr>
<td>specification 330; typical weights 38</td>
<td></td>
</tr>
<tr>
<td>paving channels 169, 873</td>
<td></td>
</tr>
<tr>
<td>paving flags 170</td>
<td></td>
</tr>
<tr>
<td>PD (Published Document) 73</td>
<td></td>
</tr>
<tr>
<td>pebbledash 480</td>
<td></td>
</tr>
<tr>
<td>peeling of paintwork 853</td>
<td></td>
</tr>
<tr>
<td>peg tiles 506</td>
<td></td>
</tr>
<tr>
<td>pendants, stairway 807</td>
<td></td>
</tr>
<tr>
<td>pendentive dome 9, 684</td>
<td></td>
</tr>
<tr>
<td>penetration test, concrete 138</td>
<td></td>
</tr>
<tr>
<td>percussion bored piles 267, 268</td>
<td></td>
</tr>
<tr>
<td>percussion driven piles 274–85</td>
<td></td>
</tr>
<tr>
<td>perforated steel beams 631</td>
<td></td>
</tr>
<tr>
<td>performance rating 32–3</td>
<td></td>
</tr>
<tr>
<td>performance standards 71</td>
<td></td>
</tr>
<tr>
<td>perimeter trench excavations 305</td>
<td></td>
</tr>
<tr>
<td>permeable paving 875</td>
<td></td>
</tr>
<tr>
<td>permitted development 46–7</td>
<td></td>
</tr>
<tr>
<td>personal protective equipment (PPE) 125</td>
<td></td>
</tr>
<tr>
<td>perspective projection 25</td>
<td></td>
</tr>
<tr>
<td>phenol formaldehyde 654</td>
<td></td>
</tr>
<tr>
<td>phenolic foam board, thermal performance</td>
<td>552</td>
</tr>
<tr>
<td>physical considerations 4</td>
<td></td>
</tr>
<tr>
<td>phytoremediation 367</td>
<td></td>
</tr>
<tr>
<td>pictorial symbols 56–7</td>
<td></td>
</tr>
<tr>
<td>picture rails 857</td>
<td></td>
</tr>
<tr>
<td>piers: brick 389, 417; calculations 417;</td>
<td></td>
</tr>
<tr>
<td>vertical strut 5</td>
<td></td>
</tr>
<tr>
<td>pigments 850</td>
<td></td>
</tr>
<tr>
<td>pile caps 286</td>
<td></td>
</tr>
<tr>
<td>piled basements 308, 355</td>
<td></td>
</tr>
<tr>
<td>piled foundations 266–86; classification</td>
<td></td>
</tr>
<tr>
<td>266; displacement piles 274–85;</td>
<td></td>
</tr>
<tr>
<td>replacement piles 267–73; short bored</td>
<td></td>
</tr>
<tr>
<td>piles 259; and subsoil movements 247, 248;</td>
<td></td>
</tr>
<tr>
<td>testing 286</td>
<td></td>
</tr>
<tr>
<td>piling hammers 283–5</td>
<td></td>
</tr>
<tr>
<td>pillar tap 901</td>
<td></td>
</tr>
<tr>
<td>pipe culverts 339</td>
<td></td>
</tr>
<tr>
<td>pipeline identification 56</td>
<td></td>
</tr>
<tr>
<td>pipe sizing, drainage pipes 891</td>
<td></td>
</tr>
</tbody>
</table>
pipework: holing and notching for 780–1; service openings 939
pipework joints 904
PI (plasticity index) 109
PIR (polyisocyanurate foam) 509
pitched trusses 671; steel 663–4
pitch line (stairs) 804
pitch pine 858
pitch polymer damp-proof courses 409
pit excavations 321
pivot windows 444
plain tiles 505
plane frame 6
planers 854
planing, laminated timber 652
plank plasterboard 753
planning applications 45–51
planning grid 52
Planning (Listed Buildings and Conservation Areas) Act 152; demolition 195
plans 44
plant: maintenance of 202; planning for 113
plasterboard: ceilings 783, 844; dry lining 750; edge profiles 750; fire resistance 743; fixing 754, 844; jointing 755; plaster finish 748; sound insulation 798; thermal performance 551; types 753
plaster finish 747–8; painting 852; see also gypsum plaster
plastic inspection chambers 887
plasticisers 422
plasticity index (PI) 109
plastic limit, soils 110
plastics 862
plate girders 632
plate loading (bearing) test 102–3
platform frame 475
platforms, working 175
plinths 397
plywood 860; flat roof decks 527; linings 752; thermal performance 552
plywood faced lattice 650
pneumatic caissons 338
pockets, sash 439
pointing 393
poker vibrators 238, 362
poling board 324
Pollution Prevention and Control Act 1999 365
polyisocyanurate foam (PIR) 509
polymer membranes 535, 694
polymer renders 481
polypropylene: cavity trays 427; damp-proof courses 409
polypropylene ventilator 761
polysulphide sealant 864
polyurethane board, thermal performance 552
polyurethane sealant 864
polyvinyl acetate (PVA) 481
polyvinyl chloride (PVC): floor tiles 764; roof coverings 535
porches 69
portable cabins 122
portable toilets 123
portal cranes 226
portal frames 646–50
Portland cement 325; mortar 422
Portsmouth floatvalve 901
post and lintel 6
post and panel diaphragm wall 357
post-tensioned reinforced concrete 330, 624–5
post-tensioned retaining wall 298
power float 239
power ring circuits 923
power sockets 924
PPC Regulations 2000 365
PPE (personal protective equipment) 125
practice accreditation 76–7
precast concrete: blocks 399; coping 405; pre-tensioning 623
precast concrete crosswall construction 473–4
precast concrete diaphragm walls 357
precast concrete floors 761–3, 789–93; sound insulation 796, 799
precast concrete frames 617–20, 647
precast concrete panels 701, 714–20
precast concrete stairs 819–22
prefabrication: precast concrete crosswall construction 473–4; steel frame construction 477–8; timber frame construction 475–6
preformed concrete piles 276, 280
preliminary sketches 21
prescribed mix (concrete) 330, 331
preservatives, timber 150, 654
pressed brick 395
pressed steel lintel 428
pressure bulb 94–5
prestressed concrete 621
prestressed concrete beams, suspended concrete floors 761, 762
prestressed lintels 428
pre-tensioned reinforced concrete 330, 623
primatic cylinders 903
priming coats 851
private sector building control 65, 67
product certification 33, 76–7
product coding 78–80
productivity, plant use 204
Index

profiled concrete 721
profiled metal roof coverings 665–9
project documentation 20
project information: building information
 modelling (BIM) 81–4; coding systems
 78–80, 82–3
project plans 37
proportional area method (U-values) 555, 557
proped cantilever 5, 661
protected buildings see listed buildings
protected shafts 18
protected stairwells 18
PSB (parallel strand beams) 656
Public Health Act, demolition 195
Publicly Available Specification (PAS) 73
public sewer 885
public stairs 827
public utility services 153; electrical supply
 917–19; gas supply 926; sewers 881, 885; water supply 892–3
Published Document (PD) 73
pugging 801
pulley head 439, 440
pulley stile 439, 440
pull-out test 138
pumice chimney blocks 938
purlins: roof sheeting fixings 666; timber
 pitched roofs 495, 497
pusher arms 198
push-up structures 662
putlog scaffolds 173
putty 449
PVA (polyvinyl acetate) 481
PVC see polyvinyl chloride (PVC)
Pynford stool underpinning 346
pyramid rooflights 698
pyrites 725

quadrant stay 438
quality assurance 76–7
quality control 28
quarried stones 372–3
quarter bonding 383
quarter space landing stair 811
queen closers 382, 384, 395
quoins 382

radon gas 415
rafters 495, 497
raft foundations 95, 260, 264
rail mounted cranes 228, 231
rain resisting construction 408; openings
 431; sills 430; stonework 378; windows 435; see also weathering details
rainscreen cladding (RSC) 577–8, 701, 705–7
rainwater drainage 872–80
rainwater gutters 872, 878
rainwater pipes 878–9
rainwater soakaways 880, 882
raised flooring 794
raking shoring 186, 188, 305
raking stretcher bond 387
random rubble 376–7
rapid hardening cement 325
rat trap bond 386
RCD (residual current device) 920
ready mixed concrete 236, 332
ready mixed mortar 423
rebates, glazing 448, 449
rebound hammer test 137
reconstituted stone 373
rectangular pad foundations 263
recycling of demolition waste 199
reduced level excavations 319, 321
redwood 858
refurbishment, Energy Performance
 Certificates (EPC) 32
regulations 54
reinforced concrete: bar schedule 605; bar
 spacing 601; binders/links 601, 608; compared with prestressed concrete
 626; concrete cover 608; fire protection
 609; grip length 599; reinforcement
 593, 605–7; retaining walls 292–6; spacers 594, 608; specification 330; see also
 in-situ reinforced concrete; precast
 concrete; prestressed concrete
reinforced concrete beam and slab raft
 251, 264
reinforced concrete beams: bar spacing 601;
 beam to column connection 620; fire
 protection 609; fixings 788; formwork
 611–12; simply supported 596–8
reinforced concrete cladding panels 714–20
reinforced concrete columns 600, 601–3;
 bar spacing 601; beam to column
 connection 620; clamps and yokes 614;
 column to column connection 619; fire
 protection 609; formwork 613–14;
 precast 618–19; shaped 614
reinforced concrete folded slab roofs 692
reinforced concrete foundations 258–60;
 cantilever foundations 265; pad
 foundations 252, 263; raft foundations
 264; strip foundations 258, 262
reinforced concrete framed structures
 596, 600
reinforced concrete slabs, simply supported
 592–4, 597–8
reinforced concrete stairs 814–18
reinforced concrete suspended floors 784–8; sound insulation 799
reinforced concrete walls: ground water control 356; retaining walls 294–6; sound insulation 797
reinforced mortar bed joints 338, 735
rendering 479–81
renders 479, 481
render, thermal performance 551
renders 479, 481
render, thermal performance 551
Renhex box pile 278
replacement bored piles 266, 267–9
residual current device (RCD) 920
resin grouts 358
resonant frequency test 139
resorcinol formaldehyde 654
restraint straps 773, 774, 775
retaining wall and raft basements 308
retaining walls 287–303; design calculations 302–3; steel sheet piling 334–5
retro-ties/straps 774
reversed bond 383
reversing drum mixer 235
RIBA Plan of Work 83
ribbed floors 785–6
ridge boards 495, 497
ridge detail: double lap tiling 507, 508; northlights 671; roof sheet coverings 667, 669; single lap tiling 515; slating 516
ridge tiles 505, 512
ridge vents 508, 540
rigid paving 166–7
rim night latch 466
rim rock 466
ring circuits 924
risers (stairs) 804
road construction 162–71; drainage 876–7; earthworks 165; kerbs, pavings and edgings 169–71; paving construction 165–7; setting out 162–4
road gullies 877
road signs 171
road-works 195
Robust Details 67
rock asphalt 530
rock, thermal conductivity 552
rodding eyes 888
roller shutter 467, 470
roll over skip 233
roll type tile 514
roof coverings: double lap tiling 505–8, 512–13; lead covered roofs 532–4, 872; sheet materials 665–9; single lap tiling 514–15; slating 516–20; weights 38; see also underlays
roofing felt 504
roofing membranes 504, 510
roofing tiles: double lap tiling 505–8, 512–13; single lap tiling 514–15; storage on site 130
rooflights 695–8; chimney flue height 933; long span roofs 671–2; thermal performance 560, 561–2
roofs 490; basic forms 491–3, 670; loads 15, 16; long span 670–8; performance requirements 490; pitches 491, 518, 522, 872; rainwater drainage 872–3; span types 496–9; surveys 30; thermal insulation 509–10; thermal performance 550, 551, 557–8, 560, 585; underlays 504; ventilation 508
roof space: habitable 500, 501, 509, 542; surveys 31; thermal insulation 569–71; ventilation 504, 540–2
roof trusses: long span roofs 671; steel 663–4; timber 498
roof vents 507, 540, 541; thermal performance 585
roof windows: chimney flue height 933; thermal performance 560, 585
room-temperature vulcanising (RTV) 864
root pile 347
rotary bored piles 267, 270–1
rotational dome 684
rotational shell 9
rough-cast 480
RSC (rainscreen cladding) 577–8, 701, 705–7
RTV (room-temperature vulcanising) 864
rubble drain 869, 876
rubble shutes 220
rubble walls 376
runner (excavations) 324
run off 349
rust staining of concrete 725
SACs (shallow access chambers) 888
saddle flashing 936
safety see health and safety
safety glass 842
salvage, demolition 197
sampling shells 97
sand: bulking 133, 327; compaction 362; silt in 134; testing 133–4
sand-lime bricks see calcium silicate bricks
sand pugging 801
sandstone: sources 372; thermal performance 551
sandy soils 245; angles of repose 322; foundations 255; investigation 100–1
Index

sanitary accommodation, disabled access 589
sanitary fittings 905–7; storage on site 131
sanitary systems, airtightness testing 912
sapele 859
saponification 853
SAP (standard assessment procedure) 33, 559
sarking 504
sash boxes 440
sash windows 433, 439; secondary glazing for 452; spring balanced 441–2; weight balancing 440
saws 854
scabbing of concrete 725
scaffolding 172–85; fittings 178; patent 179; safety checklist 185; scaffold boards 175; special systems 180–5; tubular 172–8
scarf joints 651
schedules (documentation) 20
Schmidt hammer 137
scissor stairs 814
scrapers 206
screed see concrete floor screeds
screwed joint 904
scrim tape 844
SDR (styrene butadiene resin) 412
sealed warm roof 510
sealants 863–5
sealing 510
seismic 341
sewers 881, 885
shallow access chambers (SACs) 888
shear box test 108
shear plate connector 678
shear strength: notched timber joists and beams 779; soil tests 104–6, 107–8
shear wall structure 660
sheathed cables 921
sheet glass 448
sheet materials 860–1; roof coverings 665–9; storage on site 131; typical weights 38–9
shell roofs 9, 684–91
shiplap 482
shoring 186–91
short bored piles 248, 259
showers 906
shrinkage: subsoil 109, 246–8; timber 652
shutters 467, 470
side hand casement 433
side lap 517
sight rails 157
signs and symbols: health and safety 56–7; road signs 171
silane modified polymer sealant 864
siliconates 411
silicone damp-proof courses 111
silicone sealants 708, 864
sills 430, 431, 434; doors 465; thermal bridging 580; thermal insulation 581
silty soil: foundations 255; investigation 100–1; shrinkage 109; thermal conductivity 552
simply supported beam 5
Simpson’s rule 88
single acting hammers 283
single lap tiling 514–15
single ply roofing membranes 535–6
sinks 905
SIPs (structured insulated panels) 511
site access 112
site accommodation 113, 122, 124; for materials 326
site of building 4

setting out 154–61; roads 162

setting, concrete 241

settlement 341

sewer 881, 885
shallow access chambers (SACs) 888
shear box test 108
shear plate connector 678
shear strength: notched timber joists and beams 779; soil tests 104–6, 107–8
shear wall structure 660
sheathed cables 921
sheet glass 448
sheet materials 860–1; roof coverings 665–9; storage on site 131; typical weights 38–9
shell roofs 9, 684–91
shiplap 482
shoring 186–91
short bored piles 248, 259
showers 906
shrinkage: subsoil 109, 246–8; timber 652
shutters 467, 470
side hand casement 433
side lap 517
sight rails 157
signs and symbols: health and safety 56–7; road signs 171
silane modified polymer sealant 864
siliconates 411
silicone damp-proof courses 111
silicone sealants 708, 864
sills 430, 431, 434; doors 465; thermal bridging 580; thermal insulation 581
silty soil: foundations 255; investigation 100–1; shrinkage 109; thermal conductivity 552
simply supported beam 5
Simpson’s rule 88
single acting hammers 283
single lap tiling 514–15
single ply roofing membranes 535–6
sinks 905
SIPs (structured insulated panels) 511
site access 112
site accommodation 113, 122, 124; for materials 326
site of building 4
site plans 21, 27
site preparation 365–7
site security 115, 126
site soil tests 104
site storage 126–31, 326
site survey 86–9, 365
site tests 132–3
Sitka spruce 858
skeletal construction 7
skeleton core door 835
sketches 22
skewback 425
skimmers 209
skirtings 857
slabs see concrete bed/slab
slate damp-proof courses 410
slates 516, 517, 518
slate sill 430
slating 516
sleeper walls 760
slenderness ratio (SR): brickwork 419;
timber stud partitions 741
sliding doors 467, 468–9
sliding partitions 745
sliding sash windows 433, 439–40
sloping sites: architectural form 4; setting
out 158–60; solid ground floors 758;
stepped foundations 257
slotted bolt fixings 712
slump (concrete) 331
slump test 135
slung scaffolds 180
small detached buildings: building control
exemptions 69; Energy Performance
Certificates (EPC) 32; height
limitations 391
SMM (Standard Method of Measurement)
79, 83
smoke resistance, internal doors 841
snap headers 395
soakaways 880, 882
soakers: abutments 513; chimney stacks 935;
slating 519; tile hanging 484, 485
SOA (socket outlet assembly) 121
socket outlet assembly (SOA) 121
socket outlets 923–4
soffit, arches 424
soffit boards 507, 515
soffit fixings 788
softwood board, thermal performance 552
softwood timber 858; strength grading
140–3; testing 140–6
soil assessment and testing 100–11
soil classification 100–1
soil consolidation 108
soil contaminants 365
soil investigation 92–8, 360
soil nailing 300
soils: thermal conductivities 552; see also
subsoil
soil stabilisation 360–4
soil washing 366
soil water 868
solar blinds 457
solar gain, multiple glazing 455
soldered capillary joint 904
solid construction 7
solid ground floors 758; see also concrete
bed/slab
solid masonry walls 382–90, 399;
opening details 429, 430; sound
insulation 797; thermal insulation 574,
577; U-values 572
solid slab raft 251, 264
solvent extraction, contaminated soil 367
solvents, paint 850
solvent weld joint 904
sound insulation 795–802; improvements
802; internal walls 796–8; multiple
glazing 450, 457; separating floors
799–802; suspended ceilings 849
sound-resisting construction 18, 67;
party/separating walls 738
space decks 679–80
space frames 681–3
space grid structures 679–83
spacers: concrete reinforcement 594, 608;
double glazing 455; reinforced concrete
walls 616
span (arches) 425
special bricks 395–7
specifications 20; British Standards 73
spindle moulders 854
spine beam stairs 821
spiral core door 835
spiral stairs 831–2; concrete 816, 822;
metal 824; timber 813
splashlap (lead sheeting) 533
splay bay 445
split barrel sampler 104
split ring connector 678
spring balanced sash windows 441–2
springers 424
springing (arches) 424
sprocket roofs 503
stack bond 388
stack discharge systems 908–11;
airtightness testing 912
staff bead 439, 440
staining of concrete 725
stainless steel sinks 905
stairs 803–32; access for the disabled 589; alternating tread 810; balustrades and handrails 826; in-situ reinforced concrete 814–18; with landings 811–12; metal 823–5; open risers 808–9; precast concrete 819–22; public and general use 827; spiral 813, 816, 831–2; surveys 31; tapered treads 828–30; timber 805–13 stairwell trimming 775 stair winders 829–30 standard assessment procedure (SAP) 33, 559 Standard Method of Measurement (SMM) 79, 83 standard penetration test 104 standing skip 233 star rating 72 static tower cranes 228, 229 statutory listing 152 steel bar reinforcement 606 steel box piles 278 steel decking 594–5; thermal insulation 571 steel frame construction 477–8 steel girders 674 steel joists 629 steel mesh reinforcement 607 steel, painting 852 steel reinforcement 593, 606–7; see also reinforced concrete steel roof trusses 663–4 steel screw piles 278 steel sheet piling 334–6, 354 steel spiral stairs 824 steel string stairs 825 steel trench sheeting 324, 335 steel tube piles 279 steel web lattice joists 657 steel windows 437 steel windows see structural steelwork step formats (stairs) 805, 806 stepped barrel vaults 687 stepped flashing 513, 935 stepped foundations 257 stepped ventilator 761 stitched joints 473 stone chippings, thermal performance 551 stone cladding 375 stonework 371–8; thermal performance 551; types of stone 371–3; see also cast stone stop valve 901 storage on site 126–31, 326 storey-height cladding panels 716 storey-height doorset 837 storey-height frames 836 straight mast fork lift 216 straight web pile 334 strawboard 860 stretchers 383 string beam stair 815 string over string stairs 812 string (stairs) 805, 806 stripboard 860 strip foundations 251, 262; reinforced concrete 258, 262; and subsoil movements 247, 248; width 255 structural glazing 709 structural grid 52 structural sealant glazed cladding 708 structural steel beams 630, 631–2; connections 633–4; design 640–3; for precast concrete floors 792–3 structural steel columns 630; connections 633–4; design 644–5 structural steelwork 628–44; beam design 640–3; column design 644–5; compound sections 630; connections 633–7, 649; fire protection 638–9; lattice beams 632; open web beams 631; portal frames 649; standard sections 628–9 structural timber: beams 655–6; portal frames 650; strength grading 140–3; typical weights 39 structured insulated panels (SIPs) 511 structure types and forms 5–10 struts 5, 192–4; timber roofs 497; timber stud partitions 741 strutting, timber suspended upper floors 772 stucco 749 stud partitions 740–3; fire protection 743; sound insulation 796 styrene butadiene resin (SDR) 412 subsoil: angles of repose 322; contaminated 365–6; drainage 869–70, 876; movements 245–6; see also soils subsoil water 349, 868 substructure 11 SUDS (sustainable urban drainage systems) 874–5 sulphate-resisting cement 325 sump pumping 350–2 superstructure 12 surcharging (soil stabilisation) 360 surface emissivity 550 surface finishes 14; concrete 721–5, 766; surveys 31; typical weights 39; see also wall finishes surface preparation 852 surface resistances 550 surface water 349, 868; drainage 872–80
Index

surveyors 28
surveys: building survey 29–31; demolition
preliminaries 197; site 86; site
investigations 90–1; tools and
equipment 29
suspended ceilings 845; sound and thermal
insulation 849; sound insulation 849
suspended concrete floors 761–2, 784–93;
sound insulation 799; thermal insulation
579
suspended scaffolds 181
suspended structures 661
suspended timber floors, sound insulation
796
suspended timber ground floors 758, 760;
thermal insulation 579
suspended timber upper floors 771–6; fire
protection 782–3; joists and beams
776–81; sound insulation 800–1
sustainability 72
sustainable demolition 199
sustainable drainage systems (SuDS) 874–5
sustainable urban drainage systems (SUDS)
874–5
swep valley 520
swing doors 843
swivel skip dumper 215
symbols 42–3; health and safety 56–7; road
signs 171
tack welding 336
tall buildings 658–62
tamping board vibrators 238
tamping (concreting) 238–9
tanking 315–16
tapered treads 828
target emission rate (TER) 33, 567
target fabric energy efficiency (TFEE) 567
TA (transformer assembly) 121
TBM (temporary bench mark) 154, 158
teat 859
technical drawings 21
telephone installations 940
telescopic boom crane 223
telescopic boom fork lift 216
tell-tales 249
temporary bench mark (TBM) 154, 158
temporary buildings, Energy Performance
Certificates (EPC) 32
temporary platforms 172
temporary services 113
temporary support: arches 425; excavations
322–4; loads 192–4
tendons: reinforced concrete 622; soil
nailing 300
tenoning machines 854
tension cable structure 10
tension membrane structures 10, 693–4
tension straps 773, 774
terrazzo finish 724
TER (target emission rate) 33, 567
textured finishes: concrete 721; rendering
480
TFEE (target fabric energy efficiency) 567
thatch 521
theodolites 161
thermal breaks: aluminium casement
windows 454; double glazing 450
thermal bridging 414, 580–2
thermalcheck plasterboard 753
thermal conductivities 551–2
thermal insulation: basements 318; cavity
walls 568, 572–3, 575–6, 578, 581–2;
CO2 reduction 568; damp-proof courses
d(pdc) 414; densities 552; domestic
ground floors 759, 760; external solid
walls 574, 577; improvements 574–8;
performance standards 71; roofs
509–10; roof space 569–71; suspended
ceilings 849; thermal conductivities
552; timber flat roofs 528, 530; timber
frame construction 476; typical weights
39; water storage cisterns 902
thermal movement 532, 735
thermal performance: buildings other than
dwellings 584–5; double skin roof
coverings 669; dwellings 559–65;
elements of construction 560–2; energy
efficiency rating 559; targets for
buildings other than dwellings 585;
targets for dwellings 560–3, 567–8;
U-value calculations 548–58
thermal resistance 549
thermal transmittance see U-values
thermal treatments, contaminated soil 367
thermoplastics 862; roof coverings 535
thermosetting plastics 862
thermostatic mixing valves 900
thicknessers 854
thin grouted membranes 354
thinners, paint 850
third bonding 383
three-dimensional drawings 24–5
tie bolts 616
ties 6; see also wall ties
tile hanging 482, 484–8; thermal
performance 551
tile profile sheets 665
tiles: cladding 482, 484–8; double lap
505–8, 512–13; single lap 514; see
also floor tiles; wall tiles
tile ventilators 507
tilting drum mixer 235

tilting level 159

timber: characteristics and tolerances
143–6; fungal decay 149–50; moisture content 148, 651; painting 852; preservatives 150, 654; scaffold boards 175; shrinkage 652; sills 430; sizes and surface finishes 147; storage on site 128, 130, 131; strength grading 140; testing 140; see also hardwoods; laminated timber; softwood timber; structural timber

timber beams: notched 779; sizing 777–8; structural 655–6

timber boards 860–1; flat roof decks 527; thermal performance 551
timber casement windows 434–5
timber cladding 482, 483
timber connectors 678
timber flat roofs 522; coverings 529–34; flat roof decks 527; joists 523–6; thermal insulation 528, 571
timber floorboards 765
timber frame construction 475–6; fire- and sound-resisting construction 738; rendering 480; sound insulation 798; U-values 573
timber hyperbolic paraboloid shells 690–1

timbering, excavations 323
timber joists see joists
timber mouldings 857
timber piles 275
timber pitched roofs 494–503, 543–5; preservation 544–5; thermal insulation 570; thermal performance 557–8
timber roof trusses 498
timber stairs 805–13
timber strip flooring 765
timber stud partitions see stud partitions
timber support frames, rainscreen cladding (RSC) 706
timber suspended floors see suspended timber floors
tolerances, masonry walls 407
tooled finishes, concrete 721
toothed plate timber connectors 498, 678
top down construction (basements) 310–12
top hung casement 433
topsoil removal 319, 321
torque bolts 637
tower cranes 221, 228–31
TPO (tree preservation orders) 151, 248
track mounted cranes 225
tractor shovels 208
transformer assembly (TA) 121

translational dome 9, 684
translucent glass 448
transoms 434, 445, 836
transport vehicles 214–16
transverse reinforcement 601
trapezoidal rule 89
travelling tower cranes 228, 231
treads (stairs) 804, 828
tree preservation orders (TPO) 151, 248
trees, damage to buildings 246–8
tremie pipes 269, 270
trenches: drains 889; excavations 320, 321; perimeter trench excavations 305; setting out 155; temporary support 322–4; utility services 171
trench fill foundations 251, 262; and subsoil movements 248
trial pits 92, 96
triaxial compression test 107
tricalcium aluminate, in Portland cement 325
trimming: floor openings 775; moulding profiles 857; roof openings 935
triple glazing 456–7; thermal performance 561
troughed floor 785–6
trough type tile 514
trunking (electrical) 921
trussed purlin roof 500
trussed purlins 655
trussed rafters 499
truss-out scaffolds 183
tube core structure 660
tunnel fill foundations 251, 262; and subsoil movements 248
undercloak 487, 533
undercoats 851
underlays: lead sheeting 532; slating 519, 520; vapour permeable 504, 510
underpinning 341–8
undersill cladding panels 715
Uniclass 80, 83
United Kingdom Accreditation Service (UKAS) 76
universal beams and columns 629

Index
universal bearing pile 278
urea formaldehyde (UF) foam: cavity wall insulation 575; thermal performance 552
urea formaldehyde (UF) glue 654
utility services 113, 153; detecting/locating 153; laying 171; see also public utility services
U-values: calculations 548–58; cavity walls 572–3, 575–6, 578; elements of construction 560–1, 585; low emissivity glazing 453, 454, 456; structured insulated panels (SIPs) 511; thermal insulation 570–1
vacuum dewatering 767
valley detail 512; northlights 671; roof sheet coverings 669; slating 520
valley gutter 872
valley rafter 495
valleys (roofs) 502
valley tiles 505
vane test 105
vapourcheck plasterboard 540, 753, 844
vapour control layers 510; roof spaces 540; timber flat roofs 528
vapour extraction, contaminated soil 366
vapour permeable underlay 504, 510
vehicles, transport 214
Venetian blinds, in triple glazing 457
ventilated cold roof 510
ventilated stack systems 909
ventilation: combustion air 937; roofs 504, 507, 508, 515; roof space 540–2
ventlight catch 438
vent pipe flashing 911
verge detail: double lap tiling 513; timber flat roofs 524
vertical pivot (window) 433
vertical stack bond 388
vertical strut 5
vibrating hammer 285
vibration compacting 361–2
vibration test, concrete 139
vibrators (concreting) 238
Vierendeel girder 674
vision panels 842
volume batching 327, 331
vousoirs 424, 425
vulcanising additives 864
waffle floor 785–6
wallboard 753, 844
wall finishes 14, 747–57; dry lining 750–2; plaster 747–8; plasterboard 753–5; stucco 749; wall tiling 756–7; see also cladding
wall inset 158
wall panelling 856
wall plates 507, 515
wall profiles 733
walls: ashlar 374–5, 377; attached piers 389–90; cracking in 249; diaphragm 406; finned 405; formwork 615–16; lateral restraint 773–4; loads 15; rubble 376–7; solid block 399; solid brick 382–90; surveys 30; thermal performance 549–51; underpinning 342; see also blockwork; brickwork; cavity walls; external walls; internal walls; masonry walls; separating walls
wall ties 392, 400, 429, 616; construction joints 734; masonry partitions 739; retro-ties 774; thermal performance 551, 552; see also bonding ties
wall tiles 756–7; see also ceramic tiles
warm decks 523, 524, 525, 528; thermal insulation 571
warm roofs 509–10
warning signs 56–7
warranties, house builders’ 67
wash boring 98
washing facilities on site 124
waste, demolition 199
waste water 868
waste water discharge 908–11
water: in cement 325; dewatering 349; subsoil 349, 868; see also surface water
water bars: basement construction 314; door sills 465
water-based paints 850
water/cement ratio 250, 328–9
water closets 907
water installations: cisterns 902; cold water 894–5; flow controls 901; hot water 896–900; pipework joints 904
water main 892
waterproofing, basements 313–17
water retention, concrete 240, 241
water storage cisterns 902–3
water supply 892–3
water table 349, 869
water taps 901
watertightness testing 890
wc’s 907
weatherboarding 482
weathering, artificial stones 373
weathering details: abutments 513, 524, 530, 536; chimney stacks 935–6; concrete claddings 718; discharge stacks 911; see also abutment details; flashings; soakers
weep holes 287, 408
weighing hopper 328
<table>
<thead>
<tr>
<th>weight/weigh batching</th>
<th>328, 331</th>
</tr>
</thead>
<tbody>
<tr>
<td>welded connections</td>
<td>636</td>
</tr>
<tr>
<td>wellpoint systems</td>
<td>352–3</td>
</tr>
<tr>
<td>welted joints</td>
<td>532</td>
</tr>
<tr>
<td>western hemlock</td>
<td>858</td>
</tr>
<tr>
<td>western red cedar</td>
<td>858</td>
</tr>
<tr>
<td>Winchester cutting</td>
<td>487</td>
</tr>
<tr>
<td>winder flights</td>
<td>829–30</td>
</tr>
<tr>
<td>window heads</td>
<td>431; thermal performance 580, 581</td>
</tr>
<tr>
<td>window jambs</td>
<td>431; thermal performance 580, 581</td>
</tr>
<tr>
<td>windows</td>
<td>432–50; bay 445; casement 434–8; draughtproofing 583; emergency escape 432; high performance 435; ironmongery 438; notation 447; performance requirements 432; pivot 444; sash 439–43; schedules 446; thermal performance 560, 561–2, 566, 585; types 433; see also glazing; rooflights</td>
</tr>
<tr>
<td>window sills</td>
<td>430, 431, 434; thermal bridging 580; thermal insulation 581</td>
</tr>
<tr>
<td>Windsor probe test</td>
<td>138</td>
</tr>
<tr>
<td>wired glass</td>
<td>448</td>
</tr>
<tr>
<td>wood block flooring</td>
<td>765</td>
</tr>
<tr>
<td>wood boring insects</td>
<td>544–5</td>
</tr>
<tr>
<td>wood cement board</td>
<td>861</td>
</tr>
<tr>
<td>wood chipboard</td>
<td>see chipboard</td>
</tr>
<tr>
<td>wood cored rolls and drips</td>
<td>533, 534</td>
</tr>
<tr>
<td>wood glue</td>
<td>654</td>
</tr>
<tr>
<td>wood panelling</td>
<td>856</td>
</tr>
<tr>
<td>woodwool slabs</td>
<td>861; flat roof decks 527; thermal performance 551</td>
</tr>
<tr>
<td>woodworking machines</td>
<td>854</td>
</tr>
<tr>
<td>woodworm control</td>
<td>544</td>
</tr>
<tr>
<td>workability of concrete</td>
<td>328–9</td>
</tr>
<tr>
<td>Work at Height Regulations</td>
<td>2005 54</td>
</tr>
<tr>
<td>working platforms</td>
<td>175</td>
</tr>
<tr>
<td>workmanship</td>
<td>28</td>
</tr>
<tr>
<td>workshops</td>
<td>391</td>
</tr>
<tr>
<td>wrecking balls</td>
<td>198</td>
</tr>
<tr>
<td>zero carbon home</td>
<td>72</td>
</tr>
<tr>
<td>zones (construction grids)</td>
<td>53</td>
</tr>
</tbody>
</table>